We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




All-Digital Histopathology Attained by Infrared-Optical Hybrid Microscopy

By LabMedica International staff writers
Posted on 24 Feb 2020
The gold standard of tissue pathology is to add dyes or stains so that pathologists can see the shapes and patterns of the cells under a microscope. More...
However, it can be difficult to distinguish cancer from healthy tissue or to pinpoint the boundaries of a tumor, and in many cases diagnosis is subjective.

Optical microscopy for biomedical samples requires expertise in histological staining to visualize structure and composition. Mid-infrared (mid-IR) spectroscopic imaging offers label-free molecular recording and virtual staining by probing fundamental vibrational modes of molecular components.

Bioengineers at the University of Illinois at Urbana–Champaign (Urbana, IL, USA) and their colleagues developed a hybrid microscope by adding an infrared laser and a specialized microscope lens, called an interference objective, to an optical camera. The infrared-optical hybrid measures both infrared data and a high-resolution optical image with a light microscope, the kind ubiquitous in clinics and laboratories.

The team combined the two techniques which harnesses the strengths of both. It has the high resolution, large field-of-view and accessibility of an optical microscope. Furthermore, infrared data can be analyzed computationally, without adding any dyes or stains that can damage tissues. Software can recreate different stains or even overlap them to create a more complete, all-digital picture of what is in the tissue.

The scientists verified their microscope by imaging breast tissue samples, both healthy and cancerous, and comparing the results of the hybrid microscope's computed "dyes" with those from the traditional staining technique. The digital biopsy closely correlated with the traditional one. Furthermore, they found that their infrared-optical hybrid outperformed state-of-the-art in infrared microscopes in several ways. It has 10 times larger coverage, greater consistency and four times higher resolution, allowing infrared imaging of larger samples, in less time, with unprecedented detail.

Rohit Bhargava, PhD, a Professor of Bioengineering and senior author of the study, said, “The advantage is that no stains are required, and both the organization of cells and their chemistry can be measured. Measuring the chemistry of tumor cells and their microenvironment can lead to better cancer diagnoses and better understanding of the disease.”

The authors concluded that infrared-optical hybrid (IR-OH) is compatible with clinical pathology practice and could make for a cost-effective alternative to conventional stain-based protocols for stainless, all-digital pathology. The study was published on February 3, 2020 in the Proceedings of the National Academy of Sciences.

Related Links:
University of Illinois at Urbana – Champaign


New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.