We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Automated Microscopy Compared for Routine Malaria Diagnosis

By LabMedica International staff writers
Posted on 10 Oct 2018
Microscopic examination of Giemsa-stained blood films remains a major form of diagnosis in malaria case management. More...
However, as with other visualization-based diagnoses, accuracy depends on individual technician performance, making standardization difficult and reliability poor.

Automated image recognition based on machine-learning, utilizing convolutional neural networks, offers potential to overcome these drawbacks. The application of digital image recognition to malaria microscopy, using artificial intelligence algorithms to replace or supplement the human factor in blood film interpretation, have been attempted, usually on thin films.

A team of scientists collaborating with Intellectual Ventures (Bellevue, WA, USA) conducted a cross-sectional, observational trial was conducted at two peripheral primary health facilities in Peru. They enrolled 700 participants whose age was between 5 and 75 years, and had a history of fever in the last three days or elevated temperature on admission. A finger prick blood sample was taken to create blood films for microscopy diagnosis, and additional drops of blood were spotted onto filter paper for subsequent quantitative polymerase chain reaction (qPCR) analysis. A prototype digital microscope device employing an algorithm based on machine-learning, the Autoscope, was assessed for its potential in malaria microscopy.

The investigators reported that at one clinic, sensitivity of Autoscope for diagnosing malaria was 72% and specificity was 85%. Microscopy performance was similar to Autoscope, with sensitivity 68% and specificity 100%. At one clinic, 85% of prepared slides had a minimum of 600 white blood cells (WBCs) imaged, thus meeting Autoscope’s design assumptions. At the second clinic, the sensitivity of Autoscope was 52% and specificity was 70%. Microscopy performance at this second clinic was 42% and specificity was 97%. Only 39% of slides from this clinic met Autoscope’s design assumptions regarding WBCs imaged.

The authors concluded that Autoscope’s diagnostic performance was on par with routine microscopy when slides had adequate blood volume to meet its design assumptions, as represented by results from one clinic. Autoscope’s diagnostic performance was poorer than routine microscopy on slides from the other clinic, which generated slides with lower blood volumes. The study was published on September 25, 2018, in the Malaria Journal.

Related Links:
Intellectual Ventures


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.