We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Residual Tissue Repositories Suitable for MS-Based Proteomics

By LabMedica International staff writers
Posted on 12 Sep 2018
Mass spectrometry-based proteomics has become a powerful tool for the identification and quantification of proteins from a wide variety of biological specimens.

The majority of studies utilizing tissue samples have been carried out on prospectively collected fresh frozen or optimal cutting temperature (OCT) embedded specimens. More...
However, such specimens are often difficult to obtain, in limited in supply, and clinical information and outcomes on patients are inherently delayed as compared to banked samples.

Scientists from the Pacific Northwest National Laboratory (Richland, WA, USA) and their colleagues analyzed 60 patient samples taken from the NCI's Surveillance, Epidemiology, and End Results (SEER) residual tissue repositories, which contain samples from more than 100,000 cancer patients, along with detailed demographic information, data on tumor characteristics, treatment, survival, and cause of death. The 60 samples ranged in their time of storage from seven to 32 years.

The team used 10-plex tandem mass tag (TMT) labeling and divided each sample into six fractions, each of which they then ran on a 100-minute nanoLC gradient upfront of analysis on a Q-Exactive Plus instrument. For phosphopeptide analysis, they used Immobilized Metal Affinity Chromatography (IMAC) enrichment. They found that all 60 samples provided sufficient material for proteome-wide protein expression analysis and 18 of the 60 samples provided enough material for phosphopeptide work.

The investigators identified and quantified a total of 8,582 proteins and 8,073 phosphopeptides across the SEER sample set, indicating that FFPE tissue is amenable to mass spec proteomics analysis. Protein identifications were reduced compared to the identifications possible in comparable optimal cutting temperature (OCT) compound-embedded specimens. Compared to OCT samples, peptide, protein, and phosphopeptide identifications were reduced by 50%, 20%, and 76%, respectively.

Karin D, Rodland, PhD, an expert in mass spectrometry and a senior author of the study, said, “There have been commercial kits available for 12 to 15 years for extracting proteins out of FFPE blocks, and on the face of it, the yields of protein from the FFPE blocks is not that bad. But with the mass spec technologies of 12 to 15 years ago, the rate of identification was very low. You just didn't get good [proteome] coverage out of FFPE blocks. And the assumption was that the formalin crosslinking was causing you to lose identifications. However, improvements in mass spec technology have provided instruments with higher sensitivity and better resolution that are capable of working with smaller amounts of sample.” The study was published on August 3, 2018, in the journal Clinical Proteomics.

Related Links:
Pacific Northwest National Laboratory


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
ESR Analyzer
TEST1 2.0
New
Silver Member
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.