We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Fetal Genetic Abnormalities Detected in Early Pregnancy

By LabMedica International staff writers
Posted on 24 Jul 2018
Print article
Image: Dr. Marnie Winter examining fetal trophoblastic cells isolated using inertial microfluidics (Photo courtesy of Future Industries Institute).
Image: Dr. Marnie Winter examining fetal trophoblastic cells isolated using inertial microfluidics (Photo courtesy of Future Industries Institute).
Lab-on-a-chip (LOC) technology integrates laboratory functions on a chip ranging from a few millimeters to a few square centimeters. The special design of the device allows large volumes of blood to be screened, paving the way for an efficient, cheap and quick method of separating fetal cells from maternal blood cells.

Currently, prenatal diagnostic tests involve an amniocentesis procedure or taking a sample of cells from the placenta (chorionic villus sampling), both of which carry a risk of inducing miscarriage. While noninvasive prenatal testing based on cell‐free fetal DNA has recently revolutionized the field of aneuploidy screening in pregnancy, it remains limited to aneuploidy and microdeletion screening, and is unable to reliably detect single gene disorders.

Bioengineers at the University of South Australia (Adelaide, Australia) and their colleagues demonstrated for the first time the utility of inertial microfluidics for efficient isolation of trophoblastic cells from maternal peripheral blood. Under optimal operating conditions, high‐recovery yields (79%) are obtained using a trophoblastic cell‐line, which is subsequently confirmed with analysis of maternal blood.

Feasibility of obtaining a diagnosis from cells isolated from a maternal sample was demonstrated in a case of confirmed fetal trisomy 21 in which six fetal cells are found in a 7 mL blood sample using fluorescence in situ hybridization. Finally, it was demonstrated that trophoblastic cells isolated using inertial microfluidics could be picked and subjected to a clinically validated sequencing assay, paving the way for further validation of this technology and larger clinical studies.

Marnie Winter, PhD, a bioengineer and first author of the study, said, “From about five weeks into the pregnancy, fetal cells originating from the placenta can be found in a mother's bloodstream. Using modern microfluidic technology, we can now isolate these extremely rare cells (about one in a million) from the mother's white blood cells and collect them for genetic analysis. We are hopeful that this device could result in a new, non-invasive prenatal diagnostic test able to detect a wide range of genetic abnormalities in early pregnancy from a simple blood sample.” The study was first published on June 14, 2018, in the journal Advanced Materials Technologies.

Related Links:
University of South Australia

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.