We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disposable POC Device Introduced for Low-Resource Areas

By LabMedica International staff writers
Posted on 05 Sep 2017
Print article
Image: Paper-based diagnostic device that detects biomarkers and identifies diseases by performing electrochemical analyses. The assays change color to indicate specific test results. The device can be plugged into the handheld potentiostat, at left (Photo courtesy of Purdue University, Aniket Pal).
Image: Paper-based diagnostic device that detects biomarkers and identifies diseases by performing electrochemical analyses. The assays change color to indicate specific test results. The device can be plugged into the handheld potentiostat, at left (Photo courtesy of Purdue University, Aniket Pal).
A recent paper described a novel diagnostic device fabricated from various types of paper to be used for point-of-care testing in areas lacking electricity and other resources.

The developers at Purdue University (West Lafayette, IN, USA) used different types of paper to fabricate Self-powered, Paper-based Electrochemical Devices (SPEDs) that were designed for sensitive diagnostics in low-resource settings. SPEDs are inexpensive, lightweight, mechanically flexible, easy to use, and disposable by burning.

The top layer of the SPED was prepared from cellulose paper with patterned hydrophobic domains that delineated hydrophilic, wicking-based microfluidic channels for accurate colorimetric assays, and self-pipetting test zones for electrochemical detection.

The bottom layer of the SPED was a triboelectric generator (TEG) made from hydrophobic paper and capable of harvesting electrical energy from the user's interaction with the SPED.

An inexpensive and rechargeable handheld potentiostat was constructed to interface with the SPED, enabling the accurate quantitative electrochemical detection of glucose, uric acid, and L-lactate. The battery powering the potentiostat could be recharged by the user, using the sequential discharge of a capacitor previously charged with the TEG built into the SPED.

A machine-vision diagnostic application was created to automatically identify and quantify each of the colorimetric tests from a digital image of the SPED, taken under a wide range of ambient light conditions, in order to provide fast diagnostic results to the user as well as to facilitate remote expert consultation.

"To our knowledge, this work reports the first self-powered, paper-based devices capable of performing rapid, accurate, and sensitive electrochemical assays in combination with a low-cost, portable potentiostat that can be recharged using a paper-based TEG," said contributing author Dr. Ramses V. Martinez, assistant professor of industrial and biomedical engineering at Purdue University. "You could consider this a portable laboratory that is just completely made out of paper, is inexpensive and can be disposed of through incineration. We hope these devices will serve untrained people located in remote villages or military bases to test for a variety of diseases without requiring any source of electricity, clean water, or additional equipment."

SPEDs were described in detail in the August 22, 2017, online edition of the journal Advanced Materials Technologies.

Related Links:
Purdue University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The breakthrough could result in a higher success rate using a simple oral swab test before IVF (Photo courtesy of Shutterstock)

POC Oral Swab Test to Increase Chances of Pregnancy in IVF

Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.