We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microcantilever-Based Sensor Detects BRAF-Mutated Malignant Melanoma

By LabMedica International staff writers
Posted on 19 Sep 2016
A novel nanosenor comprising minute cantilevers labeled with malignant melanoma-derived RNA enabled identification of patients with the BRAFV600E mutated form of the disease in less than 24 hours.

In the United States there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung, and colon each year, and malignant melanoma represents its deadliest form. More...
About 50% of all cases of malignant melanoma are characterized by a particular mutation - BRAFV600E - in the BRAF (rapid acceleration of fibrosarcoma gene B) gene. Recently developed highly specific drugs are available to treat BRAFV600E mutated tumors but require diagnostic tools for fast and reliable mutation detection to promote successful treatment.

Investigators at the University of Basel (Switzerland) and the University Hospital Basel (Switzerland) labeled nanomechanical microcantilevers with RNA from BRAFV600E mutated malignant melanoma cells.

They conducted a preliminary clinical trial in which they used RNA-labeled cantilever array sensors to demonstrate identification of a BRAFV600E single-point mutation by sampling total RNA obtained from biopsies of metastatic melanoma of diverse sources (surgical material either frozen or fixated with formalin and embedded in paraffin).

Results revealed that the method was faster than the standard Sanger or pyrosequencing methods and was comparably sensitive as next-generation sequencing. Processing time from biopsy to diagnosis took less than 24 hours and did not require PCR amplification, sequencing, and labels.

"It is essential that we are able to identify the mutations reliably in tissue samples. That is the only way of ensuring that patients get the right treatment and successful outcomes," said contributing author, Dr. Katharina Glatz professor of pathology at University Hospital Basel.

The nanosensor was described in the August 4, 2016, online edition of the journal Nano Letters.

Related Links:
University of Basel
University Hospital Basel

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.