Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microcantilever-Based Sensor Detects BRAF-Mutated Malignant Melanoma

By LabMedica International staff writers
Posted on 19 Sep 2016
A novel nanosenor comprising minute cantilevers labeled with malignant melanoma-derived RNA enabled identification of patients with the BRAFV600E mutated form of the disease in less than 24 hours.

In the United States there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung, and colon each year, and malignant melanoma represents its deadliest form. More...
About 50% of all cases of malignant melanoma are characterized by a particular mutation - BRAFV600E - in the BRAF (rapid acceleration of fibrosarcoma gene B) gene. Recently developed highly specific drugs are available to treat BRAFV600E mutated tumors but require diagnostic tools for fast and reliable mutation detection to promote successful treatment.

Investigators at the University of Basel (Switzerland) and the University Hospital Basel (Switzerland) labeled nanomechanical microcantilevers with RNA from BRAFV600E mutated malignant melanoma cells.

They conducted a preliminary clinical trial in which they used RNA-labeled cantilever array sensors to demonstrate identification of a BRAFV600E single-point mutation by sampling total RNA obtained from biopsies of metastatic melanoma of diverse sources (surgical material either frozen or fixated with formalin and embedded in paraffin).

Results revealed that the method was faster than the standard Sanger or pyrosequencing methods and was comparably sensitive as next-generation sequencing. Processing time from biopsy to diagnosis took less than 24 hours and did not require PCR amplification, sequencing, and labels.

"It is essential that we are able to identify the mutations reliably in tissue samples. That is the only way of ensuring that patients get the right treatment and successful outcomes," said contributing author, Dr. Katharina Glatz professor of pathology at University Hospital Basel.

The nanosensor was described in the August 4, 2016, online edition of the journal Nano Letters.

Related Links:
University of Basel
University Hospital Basel

New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
ESR Analyzer
TEST1 2.0
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.