We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Salivary Molecular Spectroscopy Used to Monitor Diabetes

By LabMedica International staff writers
Posted on 28 Apr 2020
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia which results from insufficient secretion and/or reduced insulin action in peripheral tissues. More...
Frequent monitoring of diabetes is essential for improved glucose control and to delay clinical complications related with diabetes.

Saliva reflects several physiological functions of the body. Salivary biomarkers might be an attractive alternative to blood for early detection, and for monitoring systemic diseases and among the advantages, saliva is simple to collect, non-invasive, convenient to store and, compared to blood, requires less handling during clinical procedures.

An international team of scientists led by those at the Federal University of Uberlandia (Uberlandia, Brazil) used a scientific system known as Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The team utilized the Vertex 70 ATR-FTIR spectrophotometer (Bruker Optics, Reinstetten, Germany) using a micro-attenuated total reflectance (ATR) component, to evaluate saliva of non-diabetic (ND), diabetic (D) and insulin-treated diabetic (D+I) rats to identify potential salivary biomarkers related to glucose monitoring.

The scientists reported that the spectrum of saliva of ND, D and D+I rats displayed several unique vibrational modes and from these, two vibrational modes were pre-validated as potential diagnostic biomarkers by ROC curve analysis with significant correlation with glycemia. Compared to the ND and D+I rats, classification of D rats was achieved with a sensitivity of 100%, and an average specificity of 93.3% and 100% using bands 1452 cm-1 and 836 cm-1, respectively. Moreover, 1452 cm-1 and 836 cm-1 spectral bands proved to be robust spectral biomarkers and highly correlated with glycemia.

Robinson Sabino-Silva, PhD, an adjunct professor and senior author of the study. “The present protocol used in the infrared platform is able to detect spectral biomarkers without reagents. The combination of a non-invasive salivary collection and a reagent-free analysis permit us to monitor diabetes with a sustainable platform classified as green technology.”

Matthew Baker, PhD, a Reader at Strathclyde University (Glasgow, UK) and a co-author of the study, said, “Frequent monitoring of diabetes is essential for improved glucose control and to delay clinical complications related to the condition. Early screening is also paramount in reducing these complications worldwide.”

The authors concluded that these salivary results indicate that ATR-FTIR spectroscopy coupled with univariate or multivariate chemometric analysis has the potential to provide a novel noninvasive approach to diabetes monitoring assisting medical decision making to avoid under-treatment or over-treatment with insulin. The study was published on March 17, 2020 in the journal PLOS ONE.



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.