We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Nanoparticles Found in Blood Pave Way for Less Invasive Cancer Diagnosis

By LabMedica International staff writers
Posted on 19 Aug 2024
Print article
Image: Researchers have found a new class of RNA in blood nanoparticles (Photo courtesy of Laboratory of Navneet Dogra, PhD, Icahn Mount Sinai)
Image: Researchers have found a new class of RNA in blood nanoparticles (Photo courtesy of Laboratory of Navneet Dogra, PhD, Icahn Mount Sinai)

Extracellular vesicles (EVs) and exosomes, tiny nanoparticles about 1,000 times smaller than a human hair, are secreted by all cells into biofluids like blood and urine. These particles are known to transport genetic material safely through the body. Researchers have now discovered a new class of RNAs within EVs that could transform the diagnosis and treatment of cancer and other diseases. This team found that these RNAs change in the presence of cancer, indicating their potential as biomarkers for diseases like prostate cancer or as therapeutic targets.

The research group at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) has dubbed these RNAs "EV-UGRs" (Extracellular Vesicles-Associated Unannotated Genomic Regions), following their identification in the blood and urine of patients with prostate cancer. UGRs, often described as the genome’s “dark matter,” play a key role in gene regulation and protein synthesis. The team previously discovered that EVs carry these small, previously unrecognized RNA segments. Their latest study aimed to assess the utility of EV-UGRs in monitoring diseases by observing prostate cancer patients before and after surgical treatment, finding significant changes in EV-UGR RNA levels post-surgery. This research, detailed in an article published online on August 15 in the Journal of Extracellular Vesicles, marks the first in-depth examination of these 'dark matter' RNA molecules in prostate cancer.

In their study, the researchers employed next-generation small RNA sequencing to rapidly analyze human tissues and fluids. They also developed an economical liquid biopsy test and techniques for isolating minute EVs from blood and urine. Additionally, they built a computational pipeline to identify these novel RNA types. The discovery of EV-UGRs could lead to breakthroughs in non-invasive diagnostics not only for prostate cancer but potentially for a variety of other conditions as well. The next phase involves rigorous randomized clinical trials to further validate this innovative approach and evaluate its broader application to ensure its efficacy.

"Our findings indicate that blood EV-UGRs undergo changes in the presence of cancer, suggesting a less invasive approach for diagnosing prostate cancer through simple liquid biopsies, potentially eliminating the need for more complex, painful, and infection-prone biopsy procedures," said Navneet Dogra, PhD, an Assistant Professor of Pathology, Molecular, and Cell-Based Medicine, and a member of the Icahn Genomics Institute, who led the study.

"This is a significant and timely achievement. The potential impact of this research is vast, promising a future where diagnosing diseases like prostate cancer could be done quickly and less invasively,” added Carlos Cordon-Cardo, MD, PhD, co-author, the Irene Heinz Given and John LaPorte Given Professor of Pathology, and Chair of the Department of Pathology, Molecular and Cell-Based Medicine at Icahn Mount Sinai. “This advancement could revolutionize care by reducing the time and discomfort associated with current diagnostic procedures, potentially leading to earlier detection and more effective treatment strategies, ultimately improving patient outcomes and quality of life.”

Related Links:
Mount Sinai

New
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Preterm Delivery Test
PREMAQUICK
New
Refrigerated High Speed Microcentrifuge
MC-24R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: Steps and methodology of skin biopsy processing for dSTORM (Photo courtesy of Front. Mol. Neurosci. (2024); DOI: 10.3389/fnmol.2024.1431549)

Super-Resolution Imaging Detects Parkinson's 20 Years Before First Motor Symptoms Appear

Parkinson's disease is the second most common neurodegenerative disorder globally, affecting approximately 8.5 million people today. This debilitating condition is characterized by the destruction of ... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.