We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
06 Feb 2023 - 09 Feb 2023

First Blood Panel to Detect Deadly Placenta Accreta Spectrum

By LabMedica International staff writers
Posted on 09 Jan 2023
Print article
Image: Placenta accreta spectrum is a life-threatening complication that poses a threat to both mother and baby (Photo courtesy of Pexels)
Image: Placenta accreta spectrum is a life-threatening complication that poses a threat to both mother and baby (Photo courtesy of Pexels)

Of the nearly four million births each year in the U.S., roughly 50,000 are marked by life-threatening complications, and up to 900 result in maternal death during delivery. One major, often life-threatening complication is placenta accreta spectrum (PAS), which poses a threat to both the mother and the baby. Currently, PAS cases are identified by ultrasounds, MRIs, and predictive confounding conditions - but these methods leave between 33% and 50% of PAS cases undetected prior to delivery. Now, a new study aims to create a targeted test for predicting PAS during pregnancy, thus better preparing patients and practitioners for the delivery day.

Placenta accreta, a condition where the placenta attaches excessively into the uterine wall, gets its “spectrum” designation because of varying degrees of placental penetration into the body that can occur. In some cases, the placenta attaches to the uterine muscle; in more severe cases, the placenta attaches through the uterine wall and to other organs, like the bladder. There are two major complications for PAS patients: abnormal placenta delivery after birth and heavy bleeding. Identification of PAS cases prior to delivery can help reduce and prepare for such complications. By studying circulating microparticle (CMP) protein panels in pregnant women, investigators from Brigham and Women’s Hospital (Boston, MA, USA) have identified five unique CMP proteins that can predict PAS as early as the second trimester of pregnancy. CMPs are tiny, extracellular vesicles that cells use to communicate with one another and have been studied extensively in other disciplines since they provide a glimpse into cell crosstalk.

The team set out to study CMPs at the maternal-fetal interface, with the goals of pinpointing a clinically useful PAS biomarker and investigating CMP mechanisms of PAS pathogenesis. The team’s primary goal was to construct a blood panel to identify PAS pregnancies. The team conducted a nested case-control study with 35 PAS patients and 70 control patients, who all were retroactively diagnosed after delivery. CMP proteins were isolated and identified from patient plasma sampled during the second and third trimesters of pregnancy. In samples collected from patients who were 26 weeks pregnant, five CMP proteins distinguished PAS patients from control patients; at 35 weeks pregnant, four CMP proteins distinguished PAS patients from control patients. Additionally, in the second trimester iron homeostasis and erythropoietin signaling were overrepresented - a trend that, in the third trimester, revealed abnormal immune function. The study successfully identified five second trimester CMP protein PAS indicators and four third trimester CMP protein PAS indicators, enabling safe predication of PAS well before delivery. The investigators note that more research and clinical trials will be needed to further test the applicability of the protein panel. Next steps include widening the patient sample size and creating a standardized commercial test.

“PAS is a significant contributor to maternal morbidity and mortality worldwide,” said corresponding author Hope Yu, MD, a Maternal-Fetal Medicine physician in the Department of Obstetrics and Gynecology at the Brigham. “Before our study, up to half of these cases weren’t able to be detected before delivery. Our study aims to improve that detection rate using a blood test and to eventually improve health outcomes worldwide.”

Related Links:
Brigham and Women’s Hospital 

Gold Supplier
Chemiluminescence Immunoassay Analyzer
MAGICL 6000
New
Adalimumab (ATA) Antibody Test
RIDASCREEN Anti-ADM Antibodies
New
DNA Isolation Kit
Maxwell CSC Blood DNA Kit
New
Anti-Insulin ELISA Test
Anti-Insulin

Print article
MEDLAB - INFORMA

Channels

Immunology

view channel
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)

Study of Emerging Pathogens to Better Understand Influenza-Antibody Interactions Could Improve Diagnostics

Outbreaks of Avian influenza have occurred around the world for over a century. The highly pathogenic H5N1 virus which was first identified in 1996 can lead to severe disease and has a high fatality rate... Read more

Microbiology

view channel
Image: Medical illustration of Carbapenem-resistant Enterobacteriacea (Photo courtesy of CDC, Stephanie Rossow)

Breakthrough Test Enables Targeted Antibiotic Therapy for Various Enterobacter Species

Bacteria of the Enterobacter genus are considered to be the most dangerous bacteria linked to hospital infections across the world. Some of their representatives demonstrate high resistance to commonly-used... Read more

Technology

view channel
Image: Flexible copper sensor made cheaply from ordinary materials (Photo courtesy of University of São Paulo)

Low-Cost Portable Sensor Detects Heavy Metals in Sweat

Heavy metals like lead and cadmium can be found in batteries, cosmetics, food and many other things that have become a part of daily life. However, they become toxic if they accumulate in the human body... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.