We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Whole Genome Sequences Discriminate Hereditary Hemorrhagic Telangiectasia Phenotypes

By LabMedica International staff writers
Posted on 26 Jul 2022
Print article
Image: This photograph shows a close-up of the face of a patient with multiple telangiectasias secondary to hereditary hemorrhagic telangiectasia (Photo courtesy of Dr. P. Marazzi)
Image: This photograph shows a close-up of the face of a patient with multiple telangiectasias secondary to hereditary hemorrhagic telangiectasia (Photo courtesy of Dr. P. Marazzi)

The abnormal vascular structures of hereditary hemorrhagic telangiectasia (HHT) often cause severe anemia due to recurrent hemorrhage, but HHT causal genes do not predict the severity of hematological complications.

Telangiectasia and larger arteriovenous malformations (AVMs) are characterized by defective vascular walls predisposing to hemorrhage. Individuals affected by HHT experience spontaneous, recurrent nosebleeds due to abnormal nasal vasculature and exhibit small, visible telangiectatic vessels that tend to develop on the lips, oral cavity, and finger pads.

Medical Scientists at the Imperial College School of Medicine (London, UK) tested for chance inheritance and clinical associations of rare deleterious variants in which loss-of-function causes bleeding or hemolytic disorders in the general population. In double-blinded analyses, all 104 patients with HHT from a single reference center recruited to the 100,000 Genomes Project were categorized on new MALO (more/as-expected/less/opposite) sub-phenotype severity scales, and whole genome sequencing data were tested for high impact variants in 75 HHT-independent genes encoding coagulation factors, or platelet, hemoglobin, erythrocyte enzyme, and erythrocyte membrane constituents.

Genes were primarily selected based on causal influences on coagulation, hemorrhage, and/or red blood cell (erythrocyte) survival exposed in the general population by bleeding disorders or congenital hemolytic anemias. The burden of usual genetic variation was compared between genes and gene categories using the gene damage index and by genic intolerance measured by the residual variation intolerance score. Variant deleteriousness was ranked by Combined Annotation Depletion (CADD) scores.

The team reported that rare variants (all gnomAD allele frequencies <0.003) were identified in 56 (75%) of these 75 HHT-unrelated genes. Deleteriousness assignments by Combined Annotation Dependent Depletion (CADD) scores >15 were supported by gene-level mutation significance cutoff scores. CADD >15 variants were identified in 38/104 (36.5%) patients with HHT, found for 1/10 patients within platelet genes; 1/8 within coagulation genes; and 1/4 within erythrocyte hemolytic genes. In blinded analyses, patients with greater hemorrhagic severity that had been attributed solely to HHT vessels had more CADD-deleterious variants in platelet and coagulation genes. However, the HHT cohort had 60% fewer deleterious variants in platelet and coagulation genes than expected.

The authors concluded that the potential to unmask pathophysiologically relevant processes is augmented by categorizing patients using severity scales that additionally influence risk-benefit considerations inherent in therapeutic provision. The study was published on July 7, 2022 in the journal Blood Advances.

Related Links:
Imperial College School of Medicine 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.