We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New Method for Three-Dimensional Analysis of Cancer Cells Shows Diagnostic Potential

By LabMedica International staff writers
Posted on 21 Feb 2022
Print article
Image: Schematic of the MOSAICA approach for labeling and analysis of spectral and time-resolved components (Photo courtesy of Nature Communications)
Image: Schematic of the MOSAICA approach for labeling and analysis of spectral and time-resolved components (Photo courtesy of Nature Communications)
A new biopsy method has been developed that can simultaneously profile multiple tumor microenvironment biomarkers and may potentially be used for cancer diagnosis and prognosis.

The new method is called Multi Omic Single-scan Assay with Integrated Combinatorial Analysis (MOSAICA). MOSAICA integrates in situ labeling of mRNA and protein markers in cells or tissues with combinatorial fluorescence spectral and lifetime encoded probes, spectral and time-resolved fluorescence imaging, and machine learning-based decoding.

Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. The fluorescence lifetime (FLT) of the fluorophore, rather than its intensity, is used to create the image in FLIM. Fluorescence lifetime depends on the local micro-environment of the fluorophore, thus precluding any erroneous measurements in fluorescence intensity due to change in brightness of the light source, background light intensity, or limited photo-bleaching. This technique also has the advantage of minimizing the effect of photon scattering in thick layers of sample. Being dependent on the micro-environment, lifetime measurements have been used as an indicator for pH, viscosity, and chemical species concentration.

Investigators at the University of California, Irvine (USA) recently described the development of MOSAICA, including an automated probe design algorithm, probe hybridization optimization and validation, combinatorial spectral and lifetime labeling, and analysis for target encoding and decoding. Particularly, they developed an automated machine learning-powered spectral and lifetime phasor segmentation software to spatially reveal and visualize the presence, identity, expression level, location, distribution, and heterogeneity of each target mRNA in the three-dimensional context.

The investigators used MOSAICA to analyze a 10-plex gene expression panel in colorectal SW480 cells based on combinatorial spectral and lifetime barcoding of only five generic commercial fluorophores and to demonstrate simultaneous co-detection of protein and mRNA in the cancer cells. They further demonstrated MOSAICA’s utility in improved multiplexing, error-detection, and autofluorescence removal in highly scattering and autofluorescent clinical melanoma Formalin-Fixed Paraffin-Embedded (FFPE) tissues, demonstrating its potential use in tissue for cancer diagnosis and prognosis.

"Spatial biology is a new science frontier and mapping out each cell and its function in the body at both the molecular and tissue level is fundamental to understanding disease and developing precision diagnostics and therapeutics," said senior author Dr. Weian Zhao, professor of pharmaceutical sciences at the University of California, Irvine. "Many cancer immunotherapeutics, including immune checkpoint inhibitors, do not work and scientists realized that was because of the spatial organization of all the tumor tissue cell types, which dictates drug efficacy. The MOSAICA can characterize the spatial cellular compositions and interactions in the tumor immune microenvironment in biopsies to inform personalized diagnosis and treatment."

Development of the MOSAICA protocol was described in the January 10, 2022, online edition of the journal Nature Communications.

Related Links:
University of California, Irvine

Gold Supplier
BMP Whole Blood Analyzer
GEM Premier ChemSTAT
New
Chemistry Analyzer
NB-201
New
Homogenizer
DP0150 Pulse 150
New
Microplate Reader
VANTAstar

Print article

Channels

Clinical Chem.

view channel
Image: The analysis pipeline used to investigate associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease (Photo courtesy of University College London)

Lipid Measurements Show Potential as Alzheimer’s Disease Biomarkers

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive impairment, the commonest of which is Alzheimer’s disease (AD). Identifying blood-based signatures of brain... Read more

Hematology

view channel
Image: The CS-2500 analyzer features pre-analytic sample checks and four detection methods simultaneously on a single platform – coagulation end-point, chromogenic kinetic analysis, turbidimetric immunoassay and automated platelet aggregation (Photo courtesy of Sysmex)

Microvascular/Endothelial Dysfunction Contributes to Post-COVID Syndrome Pathogenesis

Post-COVID syndrome (PCS) or Long-COVID is an increasingly recognized complication of acute SARS-CoV-2 infection, characterized by persistent fatigue, reduced exercise tolerance chest pain, shortness of... Read more

Industry

view channel
Image: Sales of lateral flow assays in clinical testing are expected to register a CAGR of 5% through 2032 (Photo courtesy of Pexels)

Global Lateral Flow Assays Market to Surpass USD 11.5 Billion by 2032 Due to Evolving Applications

The global lateral flow assays market was valued at USD 7.2 billion in 2021 and is projected to register a CAGR of 4.7% during 2022-2032 to surpass USD 11.7 billion by the end of 2032, driven by the growing... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.