Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Type 2 Diabetes Associated with Arrhythmic Daily Gut Microbe

By LabMedica International staff writers
Posted on 16 Jul 2020
Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. More...
Common symptoms include increased thirst, frequent urination, and unexplained weight loss.

Several studies found that obesity-related changes in the gut microbiota are associated with low grade inflammation, which supports a close link between the immune and metabolic systems throughout the gut microbiota. There are several mechanisms that relate microbiota to the onset of insulin resistance and diabetes, including changes in bowel permeability, endotoxemia, interaction with bile acids, changes in the proportion of brown adipose tissue.

A large team of scientists collaborating with the Technical University of Munich (Freising, Germany) used high-throughput 16S ribosomal RNA gene sequencing to profile gut microbial community composition in fecal samples from 1,976 individuals from Germany enrolled in the prospective KORA population study, detecting distinct levels of specific pathogens across the day in individuals with available time of defecation data.

By analyzing the diurnal gut microbiome dynamics, the team noted that individuals that had T2D or were obese appeared to lose gut oscillations that involved changes in microbiome levels of dozens of gut bacteria. The authors noted that while both obesity and T2D coincided with altered gut microbiome oscillations during the span of a day, there were differences in the operational taxa units involved, hinting that weight contributes to T2D risk stratification independent of disrupted circadian rhythms in the microbiome. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria.

The team went on to verify the 24-hour gut microbe rhythms in nearly 1,400 more German participants sampled at multiple time points. They also used an unsupervised machine learning method to focus in on a set of 13 oscillating gut bacteria with circadian patterns that are upset in individuals with T2D. The bacterial signature showed promise for finding and predicting T2D cases in a subset of 699 participants from the KORA cohort, while additional metagenomic sequence data for a subset of 50 study participants with or without T2D or pre-diabetes, each tested twice five years apart, provided a window into some of the gut microbe genes and pathways that are altered when metabolic disease-related microbe oscillations are upended.

Dirk Haller, PhD, holds the Chair of Nutrition and Immunology and is the senior author of the study, said, “We demonstrated that loss of circadian rhythmicity affects microbiome features related to the onset and progression of T2D and identified bacterial signatures for metabolic risk profiling in human populations.”

The authors concluded that it may be important to take circadian gut microbe oscillations into account to better understand the underlying mechanisms of disease-associated microbiome alterations and to validate risk profiles in prospective cohorts. The study was published on July 2, 2020 in the journal Cell Host & Microbe.

Related Links:
Technical University of Munich


Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.