We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Type 2 Diabetes Associated with Arrhythmic Daily Gut Microbe

By LabMedica International staff writers
Posted on 16 Jul 2020
Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. More...
Common symptoms include increased thirst, frequent urination, and unexplained weight loss.

Several studies found that obesity-related changes in the gut microbiota are associated with low grade inflammation, which supports a close link between the immune and metabolic systems throughout the gut microbiota. There are several mechanisms that relate microbiota to the onset of insulin resistance and diabetes, including changes in bowel permeability, endotoxemia, interaction with bile acids, changes in the proportion of brown adipose tissue.

A large team of scientists collaborating with the Technical University of Munich (Freising, Germany) used high-throughput 16S ribosomal RNA gene sequencing to profile gut microbial community composition in fecal samples from 1,976 individuals from Germany enrolled in the prospective KORA population study, detecting distinct levels of specific pathogens across the day in individuals with available time of defecation data.

By analyzing the diurnal gut microbiome dynamics, the team noted that individuals that had T2D or were obese appeared to lose gut oscillations that involved changes in microbiome levels of dozens of gut bacteria. The authors noted that while both obesity and T2D coincided with altered gut microbiome oscillations during the span of a day, there were differences in the operational taxa units involved, hinting that weight contributes to T2D risk stratification independent of disrupted circadian rhythms in the microbiome. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria.

The team went on to verify the 24-hour gut microbe rhythms in nearly 1,400 more German participants sampled at multiple time points. They also used an unsupervised machine learning method to focus in on a set of 13 oscillating gut bacteria with circadian patterns that are upset in individuals with T2D. The bacterial signature showed promise for finding and predicting T2D cases in a subset of 699 participants from the KORA cohort, while additional metagenomic sequence data for a subset of 50 study participants with or without T2D or pre-diabetes, each tested twice five years apart, provided a window into some of the gut microbe genes and pathways that are altered when metabolic disease-related microbe oscillations are upended.

Dirk Haller, PhD, holds the Chair of Nutrition and Immunology and is the senior author of the study, said, “We demonstrated that loss of circadian rhythmicity affects microbiome features related to the onset and progression of T2D and identified bacterial signatures for metabolic risk profiling in human populations.”

The authors concluded that it may be important to take circadian gut microbe oscillations into account to better understand the underlying mechanisms of disease-associated microbiome alterations and to validate risk profiles in prospective cohorts. The study was published on July 2, 2020 in the journal Cell Host & Microbe.

Related Links:
Technical University of Munich


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.