We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multiplexed Immunoassay System Differentiates Malaria Species

By LabMedica International staff writers
Posted on 02 Oct 2019
Over 40% of world’s population live in malaria-endemic areas, and malaria is found in more than 100 countries in Africa, Latin America, the Caribbean, Southeast Asia, the Eastern Mediterranean, the Western Pacific, and parts of Europe.

Malaria continues to impose a tremendous burden in terms of global morbidity and mortality, yet even today, a large number of diagnoses are presumptive resulting in lack of or inappropriate treatment. More...
Early diagnosis and prompt, appropriate treatment is essential for improving patient outcomes, preventing overuse of malarial drugs, and minimizing development and spread of anti-malarial drug resistance.

Scientists from Cornell University (Ithaca, NY, USA) and their colleagues developed a two-color lateral flow immunoassay (LFA) system to identify infections by Plasmodium spp. and differentiate Plasmodium falciparum infection from the other three human malaria species (Plasmodium vivax, Plasmodium ovale, Plasmodium malariae). To validate the performance of the assay, 25 clinical research samples in whole blood form were tested: 15 malaria negative samples, five P. falciparum positive samples, and five P. vivax positive samples.

The assay performance was first optimized and evaluated with recombinant malarial proteins spiked in washing buffer at various concentrations from zero to 1,000 ng mL−1. The color profiles developed on the single test line were discriminated and quantified: color types corresponded to malaria protein species; color intensities represented protein concentration levels. The samples were also tested using commercially available ELISA kits: Quantimal pLDH CELISA, and Quantimal Pf-HRP2 CELISA to get quantitative results to evaluate the performance of the LFA strips.

The team reported that the limit of detection (the lowest concentrations of malaria antigens that can be distinguished from blank samples) and the limit of color discrimination (the limit to differentiate pLDH from PfHRP2) were defined for the two-color assay from the spiked buffer test, and the two limits were 31.2 ng mL−1 and 7.8 ng mL−1, respectively. To further validate the efficacy of the assay, the 25 human whole blood frozen samples were tested and successfully validated against ELISA and microscopy results: 15 samples showed malaria negative; five samples showed P. falciparum positive; five samples negative for P. falciparum, but contained other malaria species.

The authors concluded that the assay provides a simple method to quickly identify and differentiate infection by different malarial parasites at the point-of-need and overcome the physical limitations of traditional LFAs, improving the multiplexing potential for simultaneous detection of various biomarkers. The study was published on September 18, 2019, in the Malaria Journal.

Related Links:
Cornell University


Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Respiratory Syncytial Virus Test
OSOM® RSV Test
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Molecular Diagnostics

view channel
Image: The new study findings emphasize the need for incorporating disease heterogeneity into type 2 diabetes care strategies (Photo courtesy of Cell 2025; doi.org/10.1016/j.cell.2025.05.00)

Molecular Fingerprint for Insulin Sensitivity Could Diagnose Diabetes Before Disease Develops

Insulin is a hormone essential for regulating blood sugar levels, and its dysfunction is a key factor in the development of diabetes. Insulin resistance, a condition where the body's cells do not respond... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: Results of AI-based 3D virtual H&E staining and quantitative analysis of pathological tissue (Photo courtesy of Nature Communications, DOI:10.1038/s41467-025-59820-0)

Virtual Staining Technology Paves Way for Non-Invasive Pathological Diagnosis

For more than 200 years, traditional pathology has depended on the technique of examining cancer tissues under a microscope, a method that provides only limited, specific cross-sections of the 3D structure... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.