We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




C. Difficile Bacteria Adapted to Spread in Hospitals

By LabMedica International staff writers
Posted on 29 Aug 2019
Clostridioides difficile, also known as Clostridium difficile, bacteria can infect the gut and are the leading cause of antibiotic-associated diarrhea worldwide. More...
While someone is healthy and not taking antibiotics, millions of 'good' bacteria in the gut keep the C. difficile under control.

However, antibiotics wipe out the normal gut bacteria, leaving the patient vulnerable to C. difficile infection in the gut. This is then difficult to treat and can cause bowel inflammation and severe diarrhea. Often found in hospital environments, C. difficile forms resistant spores that allow it to remain on surfaces and spread easily between people, making it a significant burden on the healthcare system.

Scientists at the Wellcome Trust Sanger Institute (Hinxton, UK) and their colleagues collected and cultured 906 strains of C. difficile isolated from humans, animals, such as dogs, pigs and horses, and the environment. By sequencing the DNA of each strain, and comparing and analyzing all the genomes, they discovered that C. difficile is currently evolving into two separate species.

The team found that found that this emerging species, named C. difficile clade A, made up approximately 70% of the samples from hospital patients. It had changes in genes that metabolize simple sugars, so they then studied C. difficile in mice, and found that the newly emerging strains colonized mice better when their diet was enriched with sugar. It had also evolved differences in the genes involved in forming spores, giving much greater resistance to common hospital disinfectants. These changes allow it to spread more easily in healthcare environments.

Trevor Lawley, PhD, a molecular microbiologist and senior author of the study, said, “Our study provides genome and laboratory based evidence that human lifestyles can drive bacteria to form new species so they can spread more effectively. We show that strains of C. difficile bacteria have continued to evolve in response to modern diets and healthcare systems and reveal that focusing on diet and looking for new disinfectants could help in the fight against these bacteria.” The study was published on August 12, 2019, in the journal Nature Genetics.

Related Links:
Wellcome Trust Sanger Institute


New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Gold Member
Hematology Analyzer
Medonic M32B
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.