We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Sequencing of MRSA Predicts Patient Survival

By LabMedica International staff writers
Posted on 23 Aug 2017
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that has become resistant to most types of antibiotics, and up to 20% of patients with invasive infections die. More...
Although S. aureus is a common bacterium that lives on the skin, if it gets inside the body through a cut it can cause septicemia.

Sequencing the DNA of the MRSA superbug can accurately identify patients most at risk of death and could help medical professionals develop new treatments as they move towards personalized medicine. This potentially life-threatening infection affects thousands of patients every year in the UK. There are two main strains of MRSA found in UK hospitals, called CC22 and CC30.

A team of scientists led by the Milner Centre for Evolution at the University of Bath (UK) were able to study blood samples from around 300 patients with septicemia, looking at how the different MRSA strains behaved and assessing their lethality. DNA sequencing was performed alongside measuring the toxicity, or ability to kill human cells, of the MRSA strains as well as their ability to form dangerous biofilms. Biofilms form when groups of bacteria secrete proteins that stick them together and coat surfaces in slime. Biofilms makes it easier for bacteria to evade the patient's immune system and can block the action of antibiotics. They are a particular problem in patients using catheters where up to half of patients can get an infection.

The scientists examined the genetic code of the infecting MRSA bacteria, and paired this information with individual risk factors for each patient, including age, presence of any other illnesses, and noted whether the patient was still alive after 30 days of the infection and if deceased whether MRSA contributed to their death. They found that for CC22 strains, both their toxicity and biofilm forming abilities played a significant role in whether the patient survived their infection. However these did not appear to be involved in the patient outcome for those infected with CC30 strains, meaning this strain is killing people in a different way.

Ruth C. Massey, PhD, a senior lecturer who led the study, said, “Unfortunately 20% of patients with septicemia die and cases are on the increase which suggests that existing infection control and treatment options are insufficient to tackle this important health problem. We've identified that MRSA kills people in different ways depending on the strain, and that the low toxicity CC30 strains are killing patients in an as yet unknown mechanism. It could be that they are better at evading the immune system.” The study was published on August 7, 2017, in the journal Nature Microbiology.

Related Links:
University of Bath


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
Laboratory Software
ArtelWare
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.