We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




DNA Sequencing of MRSA Predicts Patient Survival

By LabMedica International staff writers
Posted on 23 Aug 2017
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that has become resistant to most types of antibiotics, and up to 20% of patients with invasive infections die. More...
Although S. aureus is a common bacterium that lives on the skin, if it gets inside the body through a cut it can cause septicemia.

Sequencing the DNA of the MRSA superbug can accurately identify patients most at risk of death and could help medical professionals develop new treatments as they move towards personalized medicine. This potentially life-threatening infection affects thousands of patients every year in the UK. There are two main strains of MRSA found in UK hospitals, called CC22 and CC30.

A team of scientists led by the Milner Centre for Evolution at the University of Bath (UK) were able to study blood samples from around 300 patients with septicemia, looking at how the different MRSA strains behaved and assessing their lethality. DNA sequencing was performed alongside measuring the toxicity, or ability to kill human cells, of the MRSA strains as well as their ability to form dangerous biofilms. Biofilms form when groups of bacteria secrete proteins that stick them together and coat surfaces in slime. Biofilms makes it easier for bacteria to evade the patient's immune system and can block the action of antibiotics. They are a particular problem in patients using catheters where up to half of patients can get an infection.

The scientists examined the genetic code of the infecting MRSA bacteria, and paired this information with individual risk factors for each patient, including age, presence of any other illnesses, and noted whether the patient was still alive after 30 days of the infection and if deceased whether MRSA contributed to their death. They found that for CC22 strains, both their toxicity and biofilm forming abilities played a significant role in whether the patient survived their infection. However these did not appear to be involved in the patient outcome for those infected with CC30 strains, meaning this strain is killing people in a different way.

Ruth C. Massey, PhD, a senior lecturer who led the study, said, “Unfortunately 20% of patients with septicemia die and cases are on the increase which suggests that existing infection control and treatment options are insufficient to tackle this important health problem. We've identified that MRSA kills people in different ways depending on the strain, and that the low toxicity CC30 strains are killing patients in an as yet unknown mechanism. It could be that they are better at evading the immune system.” The study was published on August 7, 2017, in the journal Nature Microbiology.

Related Links:
University of Bath


Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
New
Silver Member
Quality Control Material
Multichem ID-B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.