We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Technology Quickly Diagnoses Malaria

By LabMedica International staff writers
Posted on 06 Oct 2016
Print article
Image: Gradient maps of uninfected RBC and RBCs infected by P. falciparum in early trophozoite, late trophozoite, and schizont stages (scale bar = 5µm) (Photo courtesy of Duke University).
Image: Gradient maps of uninfected RBC and RBCs infected by P. falciparum in early trophozoite, late trophozoite, and schizont stages (scale bar = 5µm) (Photo courtesy of Duke University).
The gold standard for malaria diagnosis is manual microscopic evaluation of Giemsa stained blood smears; however, the utility of this approach is limited by the skill of an expert microscopist. Further, both the staining process and microscopic examination can be time consuming.

A computerized method has been developed that relies on computers and light-based holographic scans correctly identified malaria-infected cells in a blood sample and this technique does not require any human intervention and could form the basis for a rapid field test for malaria.

A multidisciplinary team of scientists from Duke University (Durham, NC, USA) collected whole blood samples from healthy donors and red blood cells (RBCs) were isolated and purified. RBCs were infected with a Plasmodium falciparum, and synchronized. During the 48-hour life cycle, infected RBCs were isolated from the general RBC population by magnetic sorting via a magnetic cell separation system (MACS, Miltenyi Biotec, Bergisch Gladbach, Germany) to separate uninfected RBCs from those containing parasites. The team used quantitative phase spectroscopy system (QPS) to image red blood cells. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information.

Machine learning algorithms were used to distinguish uninfected RBCs from three different hemozoin containing stages of P. falciparum infected RBCs (early trophozoite–ET, late trophozoite–LT, and schizont–S). All of the classification methods have higher specificities compared to their sensitivities when distinguishing uninfected from infected RBCs for all three stages of infection. The specificities ranged from 98.4% for LT with the early stage of infection (ET) to 100% for the best performing method (LDC) for both LT and S stages.

The authors concluded that one of the main strengths of using machine learning algorithms to analyze the extracted parameters is that the identification of RBC infection will be based on quantified metrics and pre-built classifiers that requires minimal operator training. In order to enable automated imaging in the future, a microfluidic device with controlled flow rates can be combined with the analysis approach that would allow high throughput.

Adam Wax, PhD, a professor of biomedical engineering who helped pioneer the technology, said, “With this technique, the path is there to be able to process thousands of cells per minute. That’s a huge improvement to the 40 minutes it currently takes a field technician to stain, prepare and read a slide to personally look for infection,” The study was published on September 16, 2016, in the journal Public Library of Science ONE.

Related Links:
Duke University
Miltenyi Biotec
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.