We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

EUROIMMUN AG

EUROIMMUN is an international provider of medical laboratory products for autoimmune, infection, allergy and molecula... read more Featured Products: More products

Download Mobile App




Methods for Automated Anti-Neutrophil Cytoplasmic Antibodies Compared

By LabMedica International staff writers
Posted on 21 Oct 2020
Print article
Image: The EUROPattern Microscope Live: Ultrafast fluorescence microscopy that automatically detects anti-neutrophil cytoplasmic antibodies (Photo courtesy of EUROIMMUN AG).
Image: The EUROPattern Microscope Live: Ultrafast fluorescence microscopy that automatically detects anti-neutrophil cytoplasmic antibodies (Photo courtesy of EUROIMMUN AG).
The detection of anti-neutrophil cytoplasmic antibodies (ANCA) by indirect immunofluorescence assays (IFA) is of diagnostic importance in vasculitis and some other inflammatory diseases.

Several laboratories use formaldehyde-fixed neutrophil granulocytes as an auxiliary substrate in addition to conventional ethanol fixation which is reported to be useful in differentiating between antinuclear antibody and ANCA and improves interpretation of patterns. Many, especially high throughput laboratories consider indirect immunofluorescence (IIF) methods cumbersome, labor intensive and time consuming.

A team of clinical scientists at the University of Debrecen (Debrecen, Hungary) collected serum samples from 570 individuals, whose referrals were suspicion of or follow-up for acute and chronic renal failure, ulcerative colitis, Crohn’s disease, systemic autoimmune diseases, vasculitis and autoimmune liver disorders. Five patients provided two samples.

Indirect immunofluorescence testing was performed using a reagent kit designed to be used with EUROPattern (EPa), EUROIMMUN’s computer-aided immunofluorescence microscope (Granulocyte Mosaic 13; EUROIMMUN AG, Lübeck, Germany). One reaction area on the microscope slide contains three biochips (2 x 2 mm, substrate coated cover slips), covered by ethanol- or formaldehyde-fixed human neutrophil granulocytes or granulocytes scattered on a HEp-2 cell layer, respectively. Fluorescein isothiocyanate labeled goat anti-human IgG was used as secondary antibody (conjugate), which was supplemented with Evans blue dye for red counterstaining of the cells.

Slides were processed manually and screening dilution of serum samples was 1:10. The automatic results and the digital images were presented to the user on a calibrated computer screen, who checked and validated the patterns. Finally, the slides were evaluated by means of traditional visual reading under an epifluorescence microscope (EUROStar II Plus, EUROIMMUN AG).

The team reported that agreement of discrimination between negative and non-negative samples was 86.1% comparing EPa and conventional reading, and it increased to 96.7% after on-screen user validation. Importantly, from the 334 samples classified as negative by EPa, 328 (98.2%) were also negative by conventional evaluation. Pattern recognition showed ‘moderate’ agreement between classical microscopic and EPa analysis and ‘very good’ agreement after user validation. Misclassification by EPa was dominantly due to the presence of anti-nuclear/cytoplasmic antibodies (incorrect pattern, 80/568) and the lower fluorescence cut-off of the automated microscope (false positives, 73/568).

The authors concluded that automated ANCA testing by EPa is a reliable alternative of classical microscopic evaluation, though classification of sera needs correction by trained personnel during on-screen validation. The study was published on September 28, 2020 in the journal Clinica Chimica Acta.



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.