We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Faster Measurement of Vibrational Fingerprint of Molecules to Advance Biomedical Diagnostics

By LabMedica International staff writers
Posted on 25 Oct 2024
Print article
Image: The fastest Raman spectrometer on the planet (Photo courtesy of University of Tokyo)
Image: The fastest Raman spectrometer on the planet (Photo courtesy of University of Tokyo)

Identifying different types of molecules and cells is a vital process in both basic and applied science. Raman spectroscopy serves as a widely utilized measurement technique for this purpose. When a laser beam is directed at molecules, the light interacts with the vibrations and rotations of molecular bonds, causing a shift in the frequency of the scattered light. The resulting scattering spectra act as a unique “vibrational fingerprint” for each molecule. Despite its widespread use, there have been numerous efforts to enhance Raman spectroscopy, particularly because one of its main limitations is the measurement rate, which often prevents it from keeping pace with rapid changes in certain chemical and physical reactions. Now, scientists have successfully increased the measurement rate of Raman spectroscopy, paving the way for advancements in various applications such as ultrafast measurements of irreversible phenomena, high-speed hyperspectral Raman imaging, and high-throughput Raman flow cytometry.

Scientists at the Institute for Photon Science and Technology at the University of Tokyo (Tokyo, Japan) set to improve the measurement rate of Raman spectroscopy by building a system from scratch and managed to achieve a 100-fold increase. Since measurement rate has been a critical limitation, this enhancement could facilitate progress in numerous fields that depend on identifying molecules and cells, including biomedical diagnostics and material analysis. Drawing on their expertise in optics and photonics, the scientists integrated three key components: coherent Raman spectroscopy, which generates stronger signals than traditional spontaneous Raman spectroscopy; a specially designed ultrashort pulse laser; and time-stretch technology utilizing optical fibers. The results, published in the journal Ultrafast Science, show that the researchers achieved a measurement rate of 50 MSpectra/s (megaspectra per second), which is a 100-fold increase compared to the previous fastest measurement of 50 kSpectra/s (kilospectra per second). This advancement holds significant potential across a range of applications.

“We aim to apply our spectrometer to microscopy, enabling the capture of 2D or 3D images with Raman scattering spectra,” said Takuro Ideguchi of the Institute for Photon Science and Technology at the University of Tokyo, who was the principal investigator of the study. “Additionally, we envision its use in flow cytometry by combining this technology with microfluidics. These systems will enable high-throughput, label-free chemical imaging and spectroscopy of biomolecules in cells or tissues.”

Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.