We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
24 Jan 2022 - 27 Jan 2022

New Device Detects Viruses Like COVID-19 in the Body as Fast as Rapid Tests With 95% Accuracy

By LabMedica International staff writers
Posted on 30 Nov 2021
Print article
Image: UCF’s Optical Chip for Virus Detection (Photo courtesy of University of Central Florida)
Image: UCF’s Optical Chip for Virus Detection (Photo courtesy of University of Central Florida)

Researchers have developed a device that detects viruses like COVID-19 in the body as fast as and more accurately than current, commonly used rapid detection tests.

The optical sensor developed by researchers at the University of Central Florida (UCF; Orlando, FL, USA) uses nanotechnology to accurately identify viruses in seconds from blood samples. Researchers say the device can tell with 95% accuracy if someone has a virus, a significant improvement over current rapid tests that experts warn could have low accuracy. Testing for viruses is important for early treatment and to help stop their spread. The researchers tested the device using samples of Dengue virus, a mosquito transmitted pathogen that causes Dengue fever and is a threat to people in the tropics. However, the technology can easily be adapted to detect other viruses, like COVID-19.

The device closely matches the accuracy of the gold-standard PCR-based tests but with nearly instantaneous results instead of results that take several days to receive. Its accuracy is also a significant improvement over current rapid antigen tests that the U.S. Food and Drug Administration and U.S. Centers for Disease Control have cautioned could produce inaccurate results if viral loads are low or test instructions are not properly followed. The device works by using nano-scale patterns of gold that reflect back the signature of the virus it is set to detect in a sample of blood. Different viruses can be detected by using different DNA sequences that selectively target specific viruses.

The key to the device’s performance is that it can detect viruses directly from blood samples without the need for sample preparation or purification, thus speeding up the test and improving its accuracy. The researchers confirmed the device’s effectiveness with multiple tests that used different virus concentration levels and solution environments, including those with the presence of non-target virus biomarkers. The next steps for the researchers include adapting the device to detect more viruses.

“The sensitive optical sensor, along with the rapid fabrication approach used in this work, promises the translation of this promising technology to any virus detection including COVID-19 and its mutations with high degree of specificity and accuracy,” said study co-author Debashis Chanda, a professor in UCF’s NanoScience Technology Center. “Here, we demonstrated a credible technique which combines PCR-like genetic coding and optics on a chip for accurate virus detection directly from blood.”

“Although there have been previous optical biosensing demonstration in human serum, they still require off-line complex and dedicated sample preparation performed by skilled personnel — a commodity not available in typical point of care applications,” said Abraham Vazquez-Guardado, the study’s lead author and a postdoctoral fellow at Northwestern University who worked on the research as a doctoral student in Chanda’s lab. “This work demonstrated for the first time an integrated device which separated plasma from the blood and detects the target virus without any pre-processing with potential for near future practical usages.”

Related Links:
University of Central Florida 

Gold Supplier
Real-Time PCR System
CFX Opus 384 System
New
5-Part Diff Hematology Analyzer
MYTHIC 22
New
UV/Vis Spectrophotometer
BioDrop DUO+
New
3-Part Diff Auto Hematology Analyzer
Cellagon 3

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Illustration

Point-of-Care Lateral Flow Test Detects Bladder Cancer Using Urine Sample within Minutes

A breakthrough diagnostics platform uses a multiplexed lateral flow assay that detects 10 bladder cancer biomarkers from a urine sample in either laboratory or point-of-care settings. SCIENION (Berlin,... Read more

Hematology

view channel
Image: Bone marrow aspirate from a patient with Acute Myeloid Leukemia: Blasts are the predominant population and have a high nuclear to cytoplasmic ratio and generally lack granules. (Photo courtesy of Professor Peter G. Maslak, MD)

Cord Blood and Matched Related Donor Transplantation Compared in Acute Myeloid Leukemia

The prognosis of primary refractory and relapsed acute myeloid leukemia is poor, with a five-year overall survival of less than 10%. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only... Read more

Industry

view channel
Illustration

Global Immunofluorescence Assay (IFA) Market to Surpass USD 4 Billion by 2028 Due to Growing Burden of Infectious Diseases

The global immunofluorescence assay (IFA) market is expected to reach USD 4.01 billion by 2028, driven by the increasing global healthcare burden of chronic and infectious diseases, rising application... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.