We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Nanofluidic Device Traps and Concentrates Pathogenic Bacteria

By LabMedica International staff writers
Posted on 31 Mar 2020
Print article
Image: The image shows bacterial cells trapped in a three-dimensional microbead matrix (Photo courtesy of Wenrong He, Rochester Institute of Technology)
Image: The image shows bacterial cells trapped in a three-dimensional microbead matrix (Photo courtesy of Wenrong He, Rochester Institute of Technology)
A nanofluidic device containing stacked magnetic beads of different sizes has been developed to efficiently trap, concentrate, and retrieve Escherichia coli (E. coli) bacteria from liquid suspensions.

The miniaturized, inexpensive, and transparent device developed by investigators at Rutgers University (Rochester, NY, USA) and the Rochester Institute of Technology (NY, USA) is easy to fabricate and operate, making it ideal for pathogen separation in both laboratory and point-of-care settings.

The investigators used computational fluid dynamics, three-dimensional tomography technology, and machine learning to probe and explain the effects of bead stacking in a small three-dimensional space with various flow rates. Ultimately, a combination of beads with different sizes was utilized to achieve a high capture efficiency (approximately 86%) with a flow rate of 50 microliters per minute.

In addition, the investigators showed that the high deformability of the device enabled retrieval of an E. coli sample from a bacterial suspension by applying a higher flow rate followed by rapid magnetic separation. This unique function was also utilized to concentrate E. coli cells from the original bacterial suspension. An on-chip concentration factor of about 11 times was achieved by inputting 1300 microliters of the E. coli sample and then concentrating it down to 100 microliters.

The new device is expected to play an important role in the identification and isolation of drug resistant strains of bacteria, from which at least 700,000 people die each year, including 230,000 deaths from multidrug-resistant tuberculosis.

"The rapid identification of drug-resistant bacteria allows health care providers to prescribe the right drugs, boosting the chances of survival," said contributing author Dr. Ruo-Qian (Roger) Wang, assistant professor of civil and environmental engineering at Rutgers University.

The nanofluidic device was described in the February 19, 2020, issue of the journal ACS Applied Materials & Interfaces.

Related Links:
Rutgers University
Rochester Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.