We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Method for Labeling T Cells in Immunotherapy to Make Treatments Safer

By LabMedica International staff writers
Posted on 16 Jun 2025

When conventional treatments such as those for cancer do not yield results, personalized cell therapies are becoming an increasingly promising alternative. More...

One notable example is CAR-T-cell therapy, where a patient's immune cells are extracted and genetically modified in the laboratory to express a receptor that targets specific markers found on cancer cells. Once reintroduced into the body, these engineered cells proliferate and launch an immune attack on the tumor.

For physicians, having precise insight into how these modified cells act inside the body would be immensely helpful: Are they reaching the intended target? Are they replicating adequately? Could they behave erratically and, in the worst case, harm healthy tissue? At present, clinically applicable methods to answer such key questions are unavailable. A newly developed tracking approach could now provide deeper insight into the behavior of these therapeutic cells and enhance the safety of future treatments.

Researchers at the Technical University of Munich (TUM, Munich, Germany) have introduced a potential solution that involves incorporating an additional synthetic receptor into the genetically altered immune cells. These cells can then be tracked using PET imaging in combination with a specially formulated, non-toxic radioactive contrast agent. When this contrast agent, known as a radioligand, is administered, it binds exclusively to the engineered cells and their progeny, allowing for their visualization.

The method leverages specially designed proteins with precise binding capabilities, known as anticalins, which have been under development at TUM since the 1990s. This led to the creation of an anticalin that binds with the ligand DTPA and has now been adapted for use as a surface receptor on cells. Using this framework, the team created an artificial gene prompting the cells to display the anticalin receptor “DTPA-R” on their surfaces and tested the strategy on CAR-T cells.

In mouse model experiments, the team successfully demonstrated that the altered cells migrated to the diseased tissue and multiplied there. As reported in Nature Biomedical Engineering, the radioligand was also shown to be rapidly eliminated via the kidneys, to bind solely with cells bearing the artificial receptor, and to avoid interference with other biological functions.

Additionally, the research revealed that this tracking method could be used for observing gene therapies where viruses are employed to modify genetic material within cells. While promising, the technology is still in its early developmental stage. Before clinical use in humans can begin, further safety and efficacy evaluations through clinical trials are essential. Efforts toward advancing this method into clinical trials and commercial applications are currently in progress.

“For several years now, it has been clear that new medical applications like immunotherapies and gene therapies hold tremendous potential,” said TUM professor Wolfgang Weber, who led the study. “We believe that we have created a valuable tool that can make such therapies safer by providing better insight into what happens inside the body.”

Related Links:
TUM


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Illustration of a cross-section of a blood vessel with red blood cells, white blood cells, and fragments of DNA (Photo Courtesy of UC San Diego/Adobe Firefly)

Microbial DNA Signature in Blood Plasma Differentiates Two Liver Cancer Types

Determining whether a cancerous tumor originated in a given location or spread from another organ is critical for guiding diagnosis and treatment decisions. When the primary tumor site cannot be identified,... Read more

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
Image: (A) Normal skin and (B) possible pathology in ALS skin (Photo courtesy of Biomolecules and Biomedicine (2025) DOI: 10.17305/bb.2025.12100)

Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that damages motor neurons in the brain and spinal cord, causing muscle weakness, paralysis, and death within three to five... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.