We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Epigenetic Test Could Determine Efficacy of New Immunotherapy Treatments Against Multiple Myeloma

By LabMedica International staff writers
Posted on 11 Oct 2024

Multiple myeloma is a blood cancer that primarily affects individuals over the age of sixty, and its occurrence rises as the population ages. More...

In this disease, the bone marrow—the spongy tissue inside bones that produces normal blood cells—becomes overrun by abnormal plasma cells. Under normal conditions, plasma cells are part of the immune system, helping to fight infections, but in multiple myeloma, they become malignant, damaging the bone marrow and spreading to other areas such as the spine, skull, pelvis, and ribs. While current treatments can manage the disease for extended periods, a definitive cure remains elusive. However, advancements in immunotherapy, including the use of antibodies and engineered immune cells, have opened new possibilities for treating patients who relapse or are resistant to standard therapies.

Now, researchers at Josep Carreras Leukemia Research Institute (IJC, Barcelona, Spain) have demonstrated an epigenetic test that predicts the effectiveness of new immunotherapy treatments for multiple myeloma. In a study published in Leukemia, a journal from the Nature group, the team focused on identifying genes altered in cancer that are involved in immune system function and antigen recognition. This led them to discover a subgroup of multiple myeloma patients with an epigenetic modification in the PVR gene, a key immune system regulator, which resulted in the gene losing its activity.

The researchers observed that patients with this PVR gene defect experienced a better disease progression, leading them to hypothesize that cancer cells in these individuals might be more susceptible to immune system attacks. To test this idea, they used a cellular model of multiple myeloma, eliminating the PVR gene to observe how the cells responded to various immunotherapy approaches, including antibodies, T-lymphocytes, and genetically engineered natural killer cells (CAR-T cells). In all instances, the immune response effectively targeted and attacked the tumor cells in vitro. This discovery could help clinicians identify which patients are likely to benefit most from immunotherapy, improving personalized treatment strategies and clinical management.

“Our results demonstrate that in this malignant blood disease, inhibiting the PVR gene decisively increases the probability of success of immunotherapy,” said Dr. Manel Esteller, ICREA Research Professor at IJC, who directed the research “Now, then, it would be the turn of the pharmaceutical industry and clinical research to bring these results to the bedside of the patient."

Related Links:
IJC


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Thyroid-Stimulating Hormone Test
ULTRA-TSH
New
Giardia Assay
AccuDiag Giardia
New
Vasculitis Diagnostic Test
AESKULISA Vasculitis-Screen
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.