We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

AI Identifies Advanced Lung Cancer Patients Who Respond to Immunotherapy

By LabMedica International staff writers
Posted on 10 Oct 2023
Print article
Image: AI more accurately identifies patients with advanced lung cancer who respond to immunotherapy (Photo courtesy of 123RF)
Image: AI more accurately identifies patients with advanced lung cancer who respond to immunotherapy (Photo courtesy of 123RF)

Lung cancer treatment planning is often complex due to the variations in evaluating immune biomarkers. In a new study, researchers utilized artificial intelligence (AI) and digital pathology techniques to improve the accuracy of such evaluations.

The study by scientists at the Yale School of Medicine (New Haven, CT, USA) focused on how AI-based digital assessment could fare against traditional manual methods in scoring the PD-L1 immune biomarker. The goal was to see if a novel immunotherapy treatment called atezolizumab could be beneficial for patients suffering from advanced non-small cell lung cancer (NSCLC). To undertake this research, they drew upon data from the IMpower 110 phase III trial, which examined the effectiveness of atezolizumab against chemotherapy for treating advanced NSCLC. Through both manual and AI-guided evaluations of tumor cells, the team discovered that the AI system was more efficient at identifying patients as PD-L1 positive than manual methods.

Moreover, the study found that both AI-based and traditional manual scoring techniques were equally competent at predicting patient results, including how long patients lived and how long it took before the cancer progressed. Additionally, the AI system aided in confirming that for patients with a particular subtype of NSCLC known as squamous histology, the existence of PD-L1+ lymphocytes was linked to better outcomes in terms of slowing down disease progression when treated with atezolizumab.

“Our study suggests that artificial intelligence has the ability to improve the identification of PD-L1 positive patients by providing a predictive accuracy that was better than manual scoring,” said Roy S. Herbst, lead study author and deputy director of Yale Cancer Center. “The research underscores the potential of digital pathology and AI tools in enhancing PD-L1 scoring accuracy for both clinical practice and clinical trials.”

“The insights gained with AI and digital scoring could make diagnosing and choosing the right treatment easier,” added Herbst. “Our data shows that this AI technology can help refine strategies for treating advanced non-small cell lung cancer.”

Related Links:
Yale School of Medicine 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Real-time PCR System
GentierX3 Series

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more


view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.