We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Missing BAP1 Gene Associated with Immunosuppressive Molecules in Uveal Melanoma

By LabMedica International staff writers
Posted on 22 Apr 2020
Print article
Image: Mass cytometry with Helios uses CyTOF technology to enable deep profiling of translational and clinical samples across a range of cell surface and intracellular markers (Photo courtesy of Fluidigm).
Image: Mass cytometry with Helios uses CyTOF technology to enable deep profiling of translational and clinical samples across a range of cell surface and intracellular markers (Photo courtesy of Fluidigm).
Uveal melanoma is a cancer (melanoma) of the eye involving the iris, ciliary body, or choroid (collectively referred to as the uvea). Tumors arise from the pigment cells (melanocytes) that reside within the uvea and give color to the eye.

Uveal melanoma (UM) is the most common primary intraocular cancer in adults, accounting for 5% of all melanomas. Treatment options for primary UM (pUM) include radiotherapy and surgery, and usually achieve excellent local tumor control. Despite this, about 50% of UM patients develop metastatic disease, mainly in the liver.

An international team of oncology scientists led by those at the University of Liverpool (Liverpool, UK) obtained samples of pUM and metastatic UM (mUM) and four fresh enucleated pUMs were included in this study for the analyses. Formalin-fixed paraffin embedded (FFPE) pUM and mUM samples were sectioned at 4 μm thickness and underwent antigen retrieval using the Dako pretreatment module (Agilent Technologies UK Ltd, Stockport, UK). The Maxpar Human Immune Monitoring Panel Kit (Fluidigm, South San Francisco, CA, USA) was used as a reference antibody panel to immune profile primary uveal melanoma tumors.

The four fresh histopathologically‐phenotyped BAP1− pUMs were processed and analyzed using a Fluidigm Helios CyTOF mass cytometer. For RNA immune gene expression analysis, four pUMs, six mUMs, and one normal liver (NL) FFPE samples were used. Only the tumour areas were selected for RNA extraction, or the entire normal liver tissue. Digital spatial profiling analysis of one BAP1− mUM case was performed by NanoString's DSP technology platform to enable digital characterization of protein distributed on the surface of FFPE tissue sections using the Human Immune Oncology panel (NanoString Technologies, Seattle, WA, USA).

The investigators showed that show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA‐DR, CD38, and CD74. Further, single‐cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour‐associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1.

At the protein level, they observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD‐L1, and β‐catenin (CTNNB1), suggesting tumour‐driven immune exclusion and hence the immunotherapy resistance.

Carlos R. Figueiredo, PhD, the lead author of the study from the University of Turku (Turku, Finland) said, “One of the most common genetic alterations that initiates the development of uveal melanoma occurs in a tumor suppressor gene called BAP1. This gene is found absent or mutated in almost 50% of all UM patients and is associated with high-risk of metastasis development, in which immunotherapy will not work.” The study was published in the April 2020 issue of The Journal of Pathology.


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.