We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Deep Throat SARS-CoV-2 Viral Load Ascertained in Saliva Samples

By LabMedica International staff writers
Posted on 06 Apr 2020
Print article
Image: The Oxford Nanopore MinION device (Photo courtesy of Oxford Nanopore Technologies).
Image: The Oxford Nanopore MinION device (Photo courtesy of Oxford Nanopore Technologies).
Posterior oropharyngeal saliva samples are a non-invasive specimen more acceptable to patients and health-care workers. Unlike severe acute respiratory syndrome, patients with COVID-19 had the highest viral load near presentation, which could account for the fast-spreading nature of this epidemic.

In most studies of respiratory virus infections, serial sampling of nasopharyngeal or throat swabs is used for viral load monitoring. However, collection of nasopharyngeal or throat swab specimens can induce coughing and sneezing, which generates aerosol and is a potential health hazard for health-care workers.

Scientists at the University of Hong Kong (Pokfulam, Hong Kong Special Administrative Region, China) and their colleagues carried out a cohort study at two hospitals in Hong Kong between January 22, 2020, and February 12, 2020. They included patients with laboratory-confirmed COVID-19. They obtained samples of blood, urine, posterior oropharyngeal saliva, and rectal swabs. Serial viral load was ascertained by reverse transcriptase quantitative PCR (RT-qPCR). Antibody levels against the SARS-CoV-2 internal nucleoprotein (NP) and surface spike protein receptor binding domain (RBD) were measured using an enzyme immune assay (EIA). Whole-genome sequencing was done to identify possible mutations arising during infection using the Oxford Nanopore MinION device (Oxford Nanopore Technologies, Oxford, UK).

The team reported that the median viral load in posterior oropharyngeal saliva or other respiratory specimens at presentation was 5.2 log10 copies per mL. Salivary viral load was highest during the first week after symptom onset and subsequently declined with time. In one patient, viral RNA was detected 25 days after symptom onset. For 16 patients with serum samples available 14 days or longer after symptom onset, rates of seropositivity were 94% for anti-NP IgG (n = 15), 88% for anti-NP IgM (n = 14), 100% for anti- surface spike protein receptor binding domain (RBD) IgG (n = 16), and 94% for anti-RBD IgM (n = 15). Anti-SARS-CoV-2-NP or anti-SARS-CoV-2-RBD IgG levels correlated with virus neutralization titer.

The authors concluded that COVID-19 is an emerging infection with many unknowns. Their study has shed light on viral kinetics and antibody response in patients and provides scientific evidence for guiding infection control policies and therapeutics. The study was published on March 23, 2020 in the journal The Lancet Infectious Diseases.

Related Links:
University of Hong Kong
Oxford Nanopore Technologies


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.