We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Genes and Pathways Discovered in Celiac Disease

By LabMedica International staff writers
Posted on 01 May 2019
Celiac disease (CD) is a chronic systemic autoimmune disease that occurs globally in genetically predisposed individuals in response to ingestion of gluten-containing grains. More...
While the pathognomonic damage occurs in the small intestine, clinical manifestations are varied and include both intestinal and extra-intestinal symptoms.

Despite the well described pathogenic role of the adaptive immune response in CD, a complete understanding of the pathophysiology of CD, particularly concerning the early steps leading to loss of tolerance to gluten, are poorly defined. Additionally, biomarkers confirming mucosal recovery for patients with CD on a gluten free diet are lacking.

A team of scientists collaborating with Massachusetts General Hospital (Boston, MA, USA) included in a study 12 patients with active celiac disease, 15 celiac patients in remission with no intestinal damage, and 15 individuals without celiac disease. All subjects were 18 years of age or older, carried HLA DQ2 or DQ8, were in good general health. All subjects underwent venipuncture at the time of the endoscopy procedure. A minimum of 55 mL of blood were collected from each participant. Serum was evaluated for antibodies to IgA tissue transglutaminase (antitTG) QUANTA Lite Rh-tTG IgA ELISA on the BioFlash platform.

Whole blood was collected and stored at -80 ⁰C. HLA was determined using the DQ-CD Typing Plus. Four duodenal biopsies were obtained during clinically indicated upper endoscopy for each subject. RNA extraction and sequencing library preparation were performed. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and read on an ABI 7900HT Fast Real-Time PCR System with 384-Well Block Module and Automation Accessory. Immunohistochemistry of paraffin embedded duodenal biopsies were also performed.

The team found significant differences in the expression of 945 genes between people with active celiac disease and non-celiac controls; 290 genes between people with celiac disease in remission and the non-celiac group; and 538 genes between the active celiac group and the celiac disease in remission group. They identified the upregulation of novel genes including IL12R, ITGAM and IGSF4 involved in the immune response machinery and cell adhesion process in the mucosa of subjects with active CD compared to those in remission. They identified a unique signature of genes, related to innate immunity, perturbed exclusively in CD irrespective of disease status. Finally, they highlighted novel pathways of interest that may contribute to the early steps of CD pathogenesis and its comorbidities such as the spliceosome, pathways related to the innate immune response, and pathways related to autoimmunity.

Maureen Leonard, MD, a clinical director and first author of the study, said, “We know that celiac disease is a multifactorial disease with about 57 genes associated with this autoimmune condition. By performing RNA sequencing, we have uncovered additional genetic 'signatures' and moved closer to identifying targets for future therapeutic agents in celiac disease and possibly other autoimmune conditions.” The study was published on April 18, 2019, in the journal PLOS ONE.

Related Links:
Massachusetts General Hospital


New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.