We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Epigenetic Diagnostic Tool Detects Diseases in Newborns

By LabMedica International staff writers
Posted on 13 Aug 2018
Newborns are routinely screened for inheritable diseases by analyzing dried blood spots (DBS) from blood taken from a heel-prick. More...
Among the more than 300 known primary immune deficiencies (PIDs), only Severe Combined Immunodeficiencies (SCID) are detected at birth with the current technology used to analyze the DBS.

Immune cell profiles provide valuable diagnostic information for hematologic and immunologic diseases. Although it is the most widely applied analytical approach, flow cytometry is limited to liquid blood. Moreover, either analysis must be performed with fresh samples or cell integrity needs to be guaranteed during storage and transport.

An international team of scientists working with those at the Karolinska Institute (Stockholm, Sweden) developed epigenetic real-time quantitative polymerase chain reaction (qPCR) assays for analysis of human leukocyte subpopulations. After method establishment, whole blood from 25 healthy donors and 97 HIV+ patients as well as dried spots from 250 healthy newborns and 24 newborns with primary immunodeficiencies were analyzed.

The epigenetic qPCR used in the study was provided by Epiontis GmbH (Berlin, Germany). The team evaluated the concordance between flow cytometric and epigenetic data for neutrophils and B, natural killer, CD3+ T, CD8+ T, CD4+ T, and FOXP3+ regulatory T cells, demonstrating substantial equivalence between epigenetic qPCR analysis and flow cytometry. Epigenetic qPCR achieves both relative and absolute quantifications. Applied to dried blood spots, epigenetic immune cell quantification was shown to identify newborns suffering from various primary immunodeficiencies. Using epigenetic qPCR not only provides a precise means for immune cell counting in fresh-frozen blood but also extends applicability to dried blood spots.

The novel alternative approach, using epigenetic quantitative real-time PCR (qPCR) assays was shown in the study to successfully detect a larger number of PIDs including, not only SCID, but others, such as X-linked agammaglobulinemia (XLA), immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome; and severe congenital neutropenia (SCN), severe diseases that often clinically manifest within months of birth.

Sven Olek, PhD, managing director of Epiontis GmbH and a study author, said, “This technology is simple and inexpensive to use, making it especially promising for improving the care of HIV patients where monitoring blood cell counts is critical to proper treatment but extremely difficult to do in parts of the developing world where storing and transporting liquid blood is not feasible. Since a drop of the patient's blood can be placed on a piece of paper and mailed into a laboratory for analysis, this technology eliminates a patient's need to travel, often long distances, to a facility to have blood drawn. This increases the probability that the patient's immune cell counts will be more consistently monitored.”

The authors concluded that their method could expand the ability for screening immune defects and facilitate diagnostics of unobservantly collected samples, for example, in underdeveloped areas, where logistics are major barriers to screening. The study was published on August 1, 2018, in the journal Science Translational Medicine.

Related Links:
Karolinska Institute
Epiontis

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
HbA1c Test
HbA1c Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.