We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genes and Age Determine Susceptibility to Lyme Disease

By LabMedica International staff writers
Posted on 16 Nov 2016
Despite the importance of immune variation for the symptoms and outcome of Lyme disease, the factors influencing cytokine production during infection with the causal pathogen Borrelia burgdorferi remain poorly understood.

People react very differently to an infection with the Borrelia bacterium that causes Lyme disease, however, despite the large differences observed; the bacterium has a clear effect on the immune system’s energy regulation, opening up opportunities for studies into better detection of Borrelia infections.

An international team of scientists led by those at Radboud University Medical Center (Nijmegen, the Netherlands) investigated how differences in cytokine production during a Borrelia infection in 500 healthy volunteers can be explained. More...
Borrelia infection-induced monocyte- and T cell-derived cytokines were profiled in peripheral blood from two healthy human cohorts of Western Europeans from the Human Functional Genomics Project. Both non-genetic and genetic host factors were found to influence Borrelia-induced cytokine responses.

The team found that the immune response to Lyme disease appears to be strongly age-related. Production of the cytokine interleukin-22 (IL-22) deceases with age, reducing the immune system's defense against the Borrelia bacteria. They also found a genetic variation that increases production of the hypoxia-inducible factor 1-alpha (HIF-1a) protein during a Borrelia infection. This protein causes the amount of lactic acid in the cell to increase, which normally only happens at low oxygen levels. This results in an energy deficiency in the immune cells and therefore a reduction in the production of IL-22 and other inflammatory proteins.

One million people are bitten by a tick in the Netherlands each year, and about one in five of these ticks are carriers of the Borrelia bacterium. The symptoms after an infection vary widely: for example, many people have a red ring or patch around the bite, but some do not. This can make it difficult to give a correct diagnosis. Leo A B Joosten, PhD, a professor of Pathobiology and senior author of the study, said, “We had expected that people with Borrelia antibodies in their blood would have a stronger immune response to the Borrelia bacteria. However, that is not the case. It seems that the Borrelia bacterium does not cause improved resistance.” The study was published on November 3, 2016, in the journal Cell Host & Microbe.

Related Links:
Radboud University Medical Center



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.