We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Glass Microbubbles Separate CD4+ T Cells by Buoyancy

By LabMedica International staff writers
Posted on 01 Feb 2015
For human immunodeficiency virus (HIV) infected patients the number of CD4+ T lymphocytes in peripheral blood is an important marker for monitoring disease progression of acquired immune deficiency syndrome (AIDS) and treatment efficacy. More...


The standard methods for enumerating cluster of differentiation 4+ (CD4+) T cells or mature T helper cells, by using fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS) are expensive and not easily accessible in remote or resource limited areas.

Scientists at the National Health Research Institutes (Zhunan Town, Taiwan) working with colleagues in the USA developed a method for a fast isolation strategy for CD4+ cells that involves mixing blood and glass microbubbles. After the specific binding of target cells to the microbubbles carrying specific antibodies on their surface, target cells will spontaneously float to the top of the blood vial and can be quickly separated. The use of this strategy demonstrated that the isolation of CD4+ cells in less than five minutes and with better than 90% efficiency. This strategy for cell isolation based on buoyancy and glass microbubbles is quick and inexpensive, minimizes blood handling, does not require magnetic fields, or centrifugation equipment, and could lead to new, efficient strategies for AIDS diagnosis in resource-limited areas.

One critical advantage of glass microbubbles is their reduced cost. These glass microbubbles have been mass-produced for use in many industrial applications including insulation, construction, paints, and transportation. The surface of the glass microbubbles can also be modified for attaching a variety of biochemicals to, using readily available protocols developed for glass substrate. In addition the buoyancy of the glass microbubbles allows for the capturing and separation of target cells from the unwanted cells by a simple "flip tube" motion. Together these features make the technology very attractive to the development of low-cost point-of-care devices for HIV monitoring. The study was published on December 26, 2014, in the journal Technology.

Related Links:
Taiwanese National Health Research Institutes



New
Gold Member
Latex Test
SLE-Latex Test
Serological Pipet Controller
PIPETBOY GENIUS
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.