We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Noninvasive Prenatal Test Developed for Sickle Cell Disease Risk

By LabMedica International staff writers
Posted on 01 Aug 2019
Print article
Image: A blood smear of a patient with Sickle Cell Disease. Polychromatophilic reticulocytes are present (small single arrow). Target cell (large single arrow) and sickle cell (double arrow) can be seen in this view (Photo courtesy of John Lazarchick).
Image: A blood smear of a patient with Sickle Cell Disease. Polychromatophilic reticulocytes are present (small single arrow). Target cell (large single arrow) and sickle cell (double arrow) can be seen in this view (Photo courtesy of John Lazarchick).
Sickle cell disease (SCD) is an autosomal recessive disease, meaning that a child has to inherit two mutated copies of the hemoglobin gene to develop it, one from each parent. If both parents have sickle cell trait, there is a 25% chance the child will have SCD.

Without early diagnosis and treatment, the life expectancy of children with SCD is only a few years. Currently, sickle cell can only be diagnosed during pregnancy using an invasive test like amniocentesis that carries a risk, although small, of miscarriage, leading some parents to decline it. An earlier survey showed that if patients had the option of a non-invasive test, more would choose screening for the possibility of SCD.

A team of scientists working with the Guy's and St. Thomas' NHS Foundation Trust (London, UK) analyzed blood samples from 24 pregnant carrying a mutated copy of the hemoglobin gene, and as such were sickle cell carriers. The scientists optimized their method to enrich the samples for the fetal DNA, and used a molecular barcode to identify the mutant and normal gene. They use targeted next-generation sequencing of cell-free DNA from maternal plasma to diagnose fetal sickle cell disease based on a relative mutation dosage approach. No paternal or proband samples were required. Unique molecular identifiers (UMIs) were incorporated into library preparation to enable accurate quantification of mutant and wildtype allele reads.

When the 24 plasma samples from pregnant sickle cell disease carriers were analyzed, 20 were concordant with the established genotype; two with low fetal fraction were inconclusive and two were discordant. In silico size selection of cell free DNA (cfDNA) fragments was found to enhance the fetal fraction for all samples, and modifications to UMI capture improved diagnostic accuracy. Samples from as early as eight weeks gestation were successfully genotyped.

The authors concluded that they had demonstrated that non-invasive prenatal diagnosis for sickle cell disease is approaching clinical utility. Other autosomal recessive disorders may benefit from a similar approach. Julia van Campen, PhD, a geneticist and the first author of the study, said, “Although cell-free fetal DNA testing is already available for some disorders, technical difficulties have hampered the development of such a test for SCD, despite it being one of the most commonly requested prenatal tests in the UK.” The study was presented at the 2019 European Human Genetics Conference held June 15-18, 2019, in Stockholm, Sweden.

Related Links:
Guy's and St. Thomas' NHS Foundation Trust

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.