We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Smartphone Microscopes Transformed into Lab Devices

By LabMedica International staff writers
Posted on 25 Apr 2018
Print article
Image: The 3D printed devices can capture microscopic images, when attached to a smartphone camera lens (Photo courtesy of Ozcan Research Group/UCLA).
Image: The 3D printed devices can capture microscopic images, when attached to a smartphone camera lens (Photo courtesy of Ozcan Research Group/UCLA).
Mobile phones have facilitated the creation of field-portable, cost-effective imaging and sensing technologies that approach laboratory-grade instrument performance. However, the optical imaging interfaces of mobile phones are not designed for microscopy and produce distortions in imaging microscopic specimens.

It has recently been demonstrated that deep learning, a powerful form of artificial intelligence, can discern and enhance microscopic details in photos taken by smartphones. The technique improves the resolution and color details of smartphone images so much that they approach the quality of images from laboratory-grade microscopes.

Bioengineers at the Samueli School of Engineering, University of California (Los Angeles, CA; USA) photographed images of lung tissue samples, blood and Papanicolaou smears, first using a standard laboratory-grade microscope, and then with a smartphone with the 3D-printed microscope attachment. The scientists then fed the pairs of corresponding images into a computer system that "learns" how to rapidly enhance the mobile phone images. The process relies on a deep-learning-based computer code, which they had developed.

The use of deep learning to correct such distortions introduced by mobile-phone-based microscopes, facilitating the production of high-resolution, denoised, and color-corrected images, matching the performance of benchtop microscopes with high-end objective lenses, also extending their limited depth of field. After training a convolutional neural network, they successfully imaged various samples, including human tissue sections and Papanicolaou and blood smears, where the recorded images were highly compressed to ease storage and transmission. The technique uses attachments that can be inexpensively produced with a 3D printer, at less than USD100 a piece, versus the thousands of dollars it would cost to buy laboratory-grade equipment that produces images of similar quality.

Aydogan Ozcan, PhD, a Professor of Electrical and Computer Engineering and Bioengineering, said, “Using deep learning, we set out to bridge the gap in image quality between inexpensive mobile phone-based microscopes and gold-standard bench-top microscopes that use high-end lenses. We believe that our approach is broadly applicable to other low-cost microscopy systems that use, for example, inexpensive lenses or cameras, and could facilitate the replacement of high-end bench-top microscopes with cost-effective, mobile alternatives.” The study was published online on March 15, 2018, in the journal ACS Photonics.

Related Links:
Samueli School of Engineering, University of California

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Calprotectin Assay
Fecal Calprotectin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The breakthrough could result in a higher success rate using a simple oral swab test before IVF (Photo courtesy of Shutterstock)

POC Oral Swab Test to Increase Chances of Pregnancy in IVF

Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.