We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Residual Disease in Leukemia Patients Identified by ddPCR

By LabMedica International staff writers
Posted on 08 Feb 2018
Print article
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore Technologies).
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore Technologies).
Currently, minimal residual disease for chronic myeloid leukemia (CML) patients is typically monitored using real-time quantitative polymerase chain reaction (RT-qPCR), but often leukemic stem cells with the BCR-ABL1 rearrangement are present below the limit of detect of RT-qPCR.

While DNA-based approaches have previously been shown to be more sensitive identifying the breakpoint of the BCR-ABL1 rearrangement can be challenging because it is highly repetitive. In addition, many diagnostic laboratories do not have next-generation sequencing capabilities. Nanopore sequencing in combination with droplet digital PCR can be used to identify minimal residual disease in some leukemia patients.

Scientists at the University of Bari, (Bari, Italy) included 10 patients with CML in their study. The team designed amplicons to span the BCR-ABL1 junction for 10 patients and then barcoded and sequenced them on the MinION, a portable real-time device for DNA and RNA sequencing. Sequencing took around 24 hours and generated more than 21,000 reads. Average sequencing depth was 400× and the error rate around 8%. For all 10 patients, MinIon sequencing was able to identify the breakpoint and was concordant with Sanger sequencing.

Next, the team used ddPCR to quantify the number of cells that contained the rearrangement. For each patient, they designed a personalized assay based on the sequence of the BCR-ABL1 region. At diagnosis, a median of 87% of the patients' cells contained the rearrangement. The investigators also evaluated sixteen samples at 6, 12, and 15 months from diagnosis. Results from the ddPCR assay were consistent with RT-qPCR in all but one case, and the authors noted that the ddPCR assay was "was more sensitive" for "detecting residual disease" than RT-qPCR.

Chia-Lin Wei, PhD, director of genome technologies at the Jackson Laboratory (Farmington, CT, USA), said, “The study demonstrated a very suitable application for nanopore sequencing. Although the MinION does not yet have the accuracy to evaluate somatic point mutations in a diagnostic setting, sequencing through translocations is a very ideal type of data for the system. The MinIon's long reads are particularly valuable since they enable the entire region to be sequenced through in one read, which is important because breakpoint location can vary patient to patient.” The study was published on January 5, 2018, in the journal Oncotarget.

Related Links:
University of Bari
Jackson Laboratory

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.