We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Mutation Discovered in Blood Disorder Aplastic Anemia

By LabMedica International staff writers
Posted on 07 Oct 2014
A gene mutation has been discovered that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells.

Telomerase is a ribonucleoprotein enzyme that is necessary for overcoming telomere shortening in human germ and stem cells. More...
Mutations in telomerase or other telomere maintenance proteins can lead to diseases characterized by depletion of hematopoietic stem cells and bone marrow failure.

Scientists at the Children's Hospital of Philadelphia (PA, USA) working with international colleagues investigated the family of a patient who had presented with severe thrombocytopenia and macrocytosis, and has been diagnosed with aplastic anemia. The family history includes other cases of bone marrow failure, as well as oral carcinoma and leukemia. Peripheral blood DNA was available from the patient, her parents, and maternal grandparents.

Whole exome sequencing was performed and the exonic regions were captured using SureSelect Human All Exon kit (Agilent; Santa Clara, CA, USA) and pair-end sequencing was carried out on HiSeq 2000 machines (Illumina; San Diego, CA, USA). A Telomere Flow-Fluorescence In Situ Hybridization (Flow-FISH) was performed and the subsequent flow cytometry was performed on a FACS CANTO II (BD Biosciences; San Jose, CA, USA). Other complimentary methodologies were also used to corroborate the initial findings.

The 18 year-old patient, her mother and maternal grandmother presented with bone marrow failure of varying severity, and their decreasing ages of presentation in successive generations suggested disease anticipation. The team found that that the mutation in Adrenocortical Dysplasia Homolog gene (ACD) alters the telomere-binding protein tripeptidyl peptidase 1 (TPP1), disrupting the interactions between telomere and telomerase. Without access to telomerase to help maintain telomeres, blood cells lose their structural integrity and die, resulting in bone marrow failure.

Hakon Hakonarson, MD, PhD, the director of the Center for Applied Genomics, and study co-leader, said, “Identifying this causal defect may help suggest future molecular-based treatments that bypass the gene defect and restore blood cell production. This improved understanding of the underlying molecular mechanisms may suggest new approaches to treating disorders such as aplastic anemia. For instance, investigators may identify other avenues for recruiting telomerase to telomeres to restore its protective function.” The study was published on September 9, 2014, in the journal Blood.

Related Links:

Children's Hospital of Philadelphia
Agilent 
Illumina 



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.