We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Deep Throat SARS-CoV-2 Viral Load Ascertained in Saliva Samples

By LabMedica International staff writers
Posted on 06 Apr 2020
Posterior oropharyngeal saliva samples are a non-invasive specimen more acceptable to patients and health-care workers. More...
Unlike severe acute respiratory syndrome, patients with COVID-19 had the highest viral load near presentation, which could account for the fast-spreading nature of this epidemic.

In most studies of respiratory virus infections, serial sampling of nasopharyngeal or throat swabs is used for viral load monitoring. However, collection of nasopharyngeal or throat swab specimens can induce coughing and sneezing, which generates aerosol and is a potential health hazard for health-care workers.

Scientists at the University of Hong Kong (Pokfulam, Hong Kong Special Administrative Region, China) and their colleagues carried out a cohort study at two hospitals in Hong Kong between January 22, 2020, and February 12, 2020. They included patients with laboratory-confirmed COVID-19. They obtained samples of blood, urine, posterior oropharyngeal saliva, and rectal swabs. Serial viral load was ascertained by reverse transcriptase quantitative PCR (RT-qPCR). Antibody levels against the SARS-CoV-2 internal nucleoprotein (NP) and surface spike protein receptor binding domain (RBD) were measured using an enzyme immune assay (EIA). Whole-genome sequencing was done to identify possible mutations arising during infection using the Oxford Nanopore MinION device (Oxford Nanopore Technologies, Oxford, UK).

The team reported that the median viral load in posterior oropharyngeal saliva or other respiratory specimens at presentation was 5.2 log10 copies per mL. Salivary viral load was highest during the first week after symptom onset and subsequently declined with time. In one patient, viral RNA was detected 25 days after symptom onset. For 16 patients with serum samples available 14 days or longer after symptom onset, rates of seropositivity were 94% for anti-NP IgG (n = 15), 88% for anti-NP IgM (n = 14), 100% for anti- surface spike protein receptor binding domain (RBD) IgG (n = 16), and 94% for anti-RBD IgM (n = 15). Anti-SARS-CoV-2-NP or anti-SARS-CoV-2-RBD IgG levels correlated with virus neutralization titer.

The authors concluded that COVID-19 is an emerging infection with many unknowns. Their study has shed light on viral kinetics and antibody response in patients and provides scientific evidence for guiding infection control policies and therapeutics. The study was published on March 23, 2020 in the journal The Lancet Infectious Diseases.

Related Links:
University of Hong Kong
Oxford Nanopore Technologies



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Cancer-specific small RNAs released into blood act as molecular barcodes that reveal tumor identity (Photo courtesy of Arc Institute)

Blood Test Could Detect Molecular Barcodes Capable of Distinguishing Cancer Types

Some cancers are difficult to classify, track, and monitor after treatment, posing a major clinical challenge. Many tumors shed little DNA into the bloodstream, making it hard to detect minimal residual... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.