We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

New Minimally Invasive Cancer Diagnostic Device Eavesdrops On Cells’ Conversations

By LabMedica International staff writers
Posted on 26 Oct 2023
Print article
Image: The new technology could lead to quick, minimally invasive cancer diagnoses (Photo courtesy of American Chemical Society)
Image: The new technology could lead to quick, minimally invasive cancer diagnoses (Photo courtesy of American Chemical Society)

For a long time, scientists have understood that RNA (ribonucleic acid) serves as an internal messenger within cells, taking DNA's instructions to help the cells produce proteins. However, a recent discovery shows that specific kinds of RNA, termed "extracellular RNA" or exRNA, actually leave the cell. These exRNAs are enclosed in tiny carrier structures and travel through bodily fluids, acting like tiny informational messages in bottles. These exRNAs are incredibly valuable as they could hold early indicators for diseases like cancer, heart disease, and HIV. Detecting diseases via exRNA could be quicker, more effective, and cheaper than current techniques. The challenge, however, has been separating and interpreting these exRNAs, as existing methods like advanced filters and centrifuges haven't been very successful.

A team of scientists at the University of Notre Dame (Notre Dame, IN, USA) has created a groundbreaking device that uses an ingenious approach to 'eavesdrop' on cells’ conversations. This palm-sized device combines existing technologies and employs a mix of pH levels and electrical charges to segregate the exRNA carriers. The unique feature here is that each type of carrier has its own "isoelectric point," a particular pH level at which it has no positive or negative charge. Within the device, there's a seemingly simple stream of water flowing. But this stream is special. On the left side, the water is highly acidic, similar to grapefruit juice. On the opposite end of the stream, the water is extremely basic, with a pH similar to a bottle of ammonia. What's particularly remarkable about the device is its ability to generate this pH gradient in the stream without adding any chemicals, making it cost-effective and eco-friendly.

This gradient is made possible by a two-sided membrane that's powered by a custom-designed chip. This membrane divides the water into two types of ions: acidic hydronium ions and basic hydroxide ions, adding a different kind of ion to each side of the stream. As these acidic and basic streams converge, they form a pH gradient, much like how hot and cold streams form hot and cold sides with a gradient of temperature through the middle of the stream. The researchers ran the two devices in parallel and utilized machine learning to select the ideal pH range needed for separating the carriers.

What sets this approach apart is its effectiveness of the pH gradient in segregating the exRNA carriers floating in the stream. When they pass through the pH gradient, the different types of carriers form lines along their isoelectric points, making it easy to channel them into separate outlets. The researchers could obtain incredibly pure samples—up to 97%—using less than a milliliter of body fluids like blood plasma, saliva, or urine. Moreover, while the best current technologies take around a day to separate samples, this new device accomplished the task in just 30 minutes.

“Noncommunicable diseases are responsible for more than 70 percent of deaths worldwide, and cardiovascular disease and cancer are responsible for most of that number,” said postdoctoral fellow Himani Sharma who served as project lead. “Our technology shows a path to improving the way clinicians diagnose these diseases, and that could save a tremendous number of lives.”

Related Links:
University of Notre Dame

Platinum Supplier
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Gold Supplier
Melanoma Panel
UltraSEEK Melanoma Panel
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Fecal Occult Blood Test
Seracult Triple Slide FOBT

Print article


Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more


view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more


view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more


view channel
Image: Three examples of Anthrobots with hair-like cilia in yellow (Photo courtesy of Gizem Gumuskaya)

Tiny Biological Robot Healers Built From Human Cells Could Recognize Bacteria

In a pioneering study, researchers have developed microscopic biological robots, termed Anthrobots, from human tracheal cells. These tiny robots, varying in size from the width of a human hair to the tip... Read more


view channel
Image: Made-to-order diagnostic tests may soon be on the horizon (Photo courtesy of McGill University)

Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible

Home testing gained significant importance during the COVID-19 pandemic, yet the availability of rapid tests is limited, and most of them can only drive one liquid across the strip, leading to continued... Read more


view channel
Image: Covaris offers instruments, consumables, and reagents for high-throughput genomic and proteomic analysis (Photo courtesy of Covaris)

PerkinElmer Acquires Covaris to Create Global Life-Sciences and Diagnostics Platform

PerkinElmer, Inc. (Waltham, MA, USA), a global analytical services and solutions provider has acquired Covaris (Woburn, MA, USA), a developer of solutions to empower life science innovations.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.