We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

By LabMedica International staff writers
Posted on 26 Apr 2023

Physicians often use tongue depressors to examine a patient's mouth and throat. More...

However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to the development of an eco-friendly disposable sensor that can measure glucose levels and other biomarkers in saliva.

Researchers at National and Kapodistrian University of Athens (NKUA, Athens, Greece) have created this easy-to-produce device, which they believe could eventually help doctors diagnose various conditions. Wood is an attractive option for electronics and sensor design due to its renewable, biodegradable, and low-cost nature. However, its poor electrical conductivity poses challenges. One solution is to use wood as a passive substrate and coat it with metal and carbon-based inks. Another approach involves using high-power lasers to char specific regions of the wood, turning them into conductive graphite.

However, this complex technique requires advanced, costly instrumentation, an oxygen-free environment, and fire retardants. To create a more affordable and straightforward process, the researchers employed low-power diode lasers. These lasers have successfully been used to make polyimide-based sensors but have not previously been applied to wooden electronics and electrochemical sensors. The team utilized a portable, low-cost laser engraver to generate a pattern of conductive graphite electrodes on a wooden tongue depressor without the need for special conditions. These electrodes formed two electrochemical cells separated by lines drawn with a water-repellent permanent marker.

The biosensor was then used to quickly and simultaneously measure nitrite and glucose concentrations in artificial saliva. Nitrite can indicate oral diseases like periodontitis, while glucose can serve as a diagnostic for diabetes. The researchers suggest that these low-cost devices could be adapted to detect other saliva biomarkers and could be easily and rapidly produced on-site at medical facilities.

Related Links:
NKUA 


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
New
Myocardial Infarction Test
Finecare cTn I/NT-proBNP Rapid Quantitative Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.