We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Smart Fibers Could Allow T-Shirts to Analyze Electrolytes and Metabolites in Sweat

By LabMedica International staff writers
Posted on 23 Jan 2023
Print article
Image: The microelectronic fibers fabricated by the thermal drawing process and its fabrics for sweat sensing (Photo courtesy of Jingxuan Wu et al)
Image: The microelectronic fibers fabricated by the thermal drawing process and its fabrics for sweat sensing (Photo courtesy of Jingxuan Wu et al)

Fibers and fabrics have become an integral part of our daily lives, although much remains unchanged for them despite centuries of human progression. Nevertheless, recent advancements in the multi-material fiber drawing process have led to the development of new multifunctional, fiber-based smart fabrics. Smart fabrics make it possible to seamlessly integrate electronics, optics, biosensors, and mechanics into a thin strand of fiber that is intrinsically flexible and as thin as the human hair. Such fabrics can then be used for monitoring the vital physiological signals related to human mental and physical health.

Now, a team of researchers at Tohoku University (Sendai, Japan) has developed a microelectronic fiber with microscopic parameters that is capable of analyzing electrolytes and metabolites in sweat. The micrometer scale of the microelectronic fiber enables it to be woven into clothes for healthcare applications. The researchers developed the microelectronic fiber by leveraging the versatile thermal drawing process, in which heat is applied to draw out micro-structured fiber from its macroscopic preform. The researchers also patterned on two sensing electrodes for sodium and uric acid on the longitudinal surface of the fiber.

Mainstream photolithography and printing technology have made wearable electronics possible, although this generally requires the attachment of fairly rigid electronic patches to the existing fabrics or directly on the skin, resulting in just a small area of the body being covered. The new microelectronic fiber could pave the way for fiber-based smart clothes that offer more versatility in terms of functions, larger sensing areas, and greater comfort. The new smart fabric could revolutionize the textile and healthcare industries, according to the researchers, benefiting the overall society.

"Our breakthrough is the first successful attempt at using thermally drawn fiber in wearable bioelectronics for monitoring biochemical signatures," said Dr. Yuanyuan Guo, assistant professor at Tohoku University's Frontier Research Institute for Interdisciplinary Sciences, who led the research team.

Related Links:
Tohoku University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.