We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Revolutionary Transistor Could Allow Wearable Devices to Measure Sodium and Potassium in Blood

By LabMedica International staff writers
Posted on 23 Jan 2023
Print article
Image: The vertical electrochemical transistor is based on a new kind of electronic polymer and a vertical, instead of planar architecture (Photo courtesy of Northwestern University)
Image: The vertical electrochemical transistor is based on a new kind of electronic polymer and a vertical, instead of planar architecture (Photo courtesy of Northwestern University)

Researchers have developed a revolutionary transistor that could be suitable for lightweight, flexible, high-performance bioelectronics. The electrochemical transistor is compatible with blood and water and can amplify important signals, paving the way for its application in biomedical sensing. The transistor could allow for the use of wearable devices for onsite signal processing, right at the biology-device interface. Some of its likely applications could be for measuring heartbeat and the levels of sodium and potassium in blood, as well as eye motion in studies of sleep disorders.

The vertical electrochemical transistor developed by a transdisciplinary research team at Northwestern University (Evanston, IL, USA) is based on a new kind of electronic polymer and a vertical, instead of planar, architecture. The transistor conducts electricity as well as ions, and is stable in air. The design and synthesis of the new materials, and the fabrication and characterization of the transistor was made possible by the collaborative expertise of chemists, materials scientists and biomedical engineers in the research team.

In order to make electronic circuits more reliable and powerful, there is a need for two types of transistors: p-type transistors that carry positive charges and n-type transistors that carry negative charges. These types of circuits are called complementary circuits. In the past, researchers have faced a challenge in building n-type transistors which are also typically unstable. The work by the transdisciplinary research team is the first to demonstrate electrochemical transistors with similar and very high performance for both types (p+n) of electrochemical transistors. This helped the researchers fabricate highly efficient electrochemical complementary circuits.

“All modern electronics use transistors, which rapidly turn current on and off,” said Tobin J. Marks, a co-corresponding author of the study. “Here we use chemistry to enhance the switching. Our electrochemical transistor takes performance to a totally new level. You have all the properties of a conventional transistor but far higher transconductance (a measure of the amplification it can deliver), ultra-stable cycling of the switching properties, a small footprint that can enable high density integration, and easy, low-cost fabrication.”

“This exciting new type of transistor allows us to speak the language of both biological systems, which often communicate via ionic signaling, and electronic systems, which communicate with electrons,” said Jonathan Rivnay, professor of biomedical engineering at the McCormick School. “The ability of the transistors to work very efficiently as ‘mixed conductors’ makes them attractive for bioelectronic diagnostics and therapies.”

Related Links:
Northwestern University 

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit
New
STI Test
cobas TV/MG

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.