We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Blood Cholesterol Testing System Is Cheaper, More Efficient, and Faster

By LabMedica International staff writers
Posted on 08 Nov 2022
Print article
Image: A new sensor device can determine cholesterol levels in the blood (Photo courtesy of UrFU)
Image: A new sensor device can determine cholesterol levels in the blood (Photo courtesy of UrFU)

Total cholesterol contained in the body within normal limits is an important substance, without which the proper functioning of the body is impossible. Elevated blood cholesterol is a symptom of a number of diseases, such as atherosclerosis, hereditary diseases, chronic kidney failure, nephroptosis, hypertension, liver disease, pancreatic diseases. Now, scientists have developed a new sensor device for determining cholesterol levels in the blood. The system does not use protein compounds, namely enzymes. Chemists replaced them with an inorganic analogue - copper chloride. This allowed to make the process of creating cholesterol meters cheaper, to make blood testing easier, faster and more accessible.

To measure cholesterol levels with the new device developed by scientists at the Ural Federal University (UrFU, Ekaterinburg, Russia), a small amount of blood is enough. The blood is placed in an analyzing chip containing a solution of copper chloride in acetonitrile. An electrode is integrated into this chip, which is connected to a voltammetric analyzer that gives the results of the analysis. The advantage of the new chip analyzing cholesterol levels is also that it contains magnetic nanoparticles with polymers with molecular imprints that selectively sorb cholesterol, screening out any other substances characteristic of blood composition.

The microfluidic chip, in which all elements of the system are integrated, is printed on a 3D printer, which also facilitates the production process of the device, making it faster. Scientists note that the first test they conducted not on biological samples, but on model solutions that mimic blood serum. The next stage of the researchers' work is to test the system on real blood samples.

"Cholesterol determination is currently performed using colorimetry, chromatography, and enzymes. However, these methods use either extremely aggressive reagents or complex and expensive equipment, or - as recognizing and sensitive elements that determine cholesterol levels - enzymes - biological molecules that are extracted from living organisms. For example, the enzyme cholesterol oxidase is produced by some species of bacteria. Also enzymes are natural polymers, proteins, therefore, they are prone to denaturation and require certain storage conditions, temperature and acidity regimes. We decided to select a non-biological analogue of this enzyme to make the process of cholesterol analysis cheaper, easier and faster. One of the most affordable options is copper chloride, which we first discovered to be highly sensitive to cholesterol," explained Andrey Okhokhonin, Associate Professor at the Ural Federal University Department of Analytical Chemistry.

"Molecular imprinted polymers are needed to effectively separate cholesterol from other substances in the blood. After trying several options, we chose ethylene glycol dimethacrylate as the crosslinking agent and vinylpyridine as the functional monomer. The polymer synthesized on the surface of magnetic nanoparticles effectively sorbs cholesterol, so we can talk about high selectivity of analysis, as no other substances interfere," emphasized Ohokhonin.

Related Links:
UrFU 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article
77 ELEKTRONIKA

Channels

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.