We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024
25 Apr 2024 - 27 Apr 2024

New Analyzer Monitors Blood Ammonium Levels at POC to Facilitate Quick Medical Decisions

By LabMedica International staff writers
Posted on 04 Nov 2022
Print article
Image: The POC device could facilitate monitoring of hereditary and hepatic metabolic disorders (Photo courtesy of UAB)
Image: The POC device could facilitate monitoring of hereditary and hepatic metabolic disorders (Photo courtesy of UAB)

Ammonium is a biomarker used to diagnose a series of rare hereditary metabolic disorders, such as the primary disorders of the urea cycle and different organic acidemias, as well as other metabolic and environmental conditions affecting the liver’s function, which can cause a secondary dysfunction of the urea cycle. Ammonium is also useful in the study and monitoring of different hepatopathies (diseases affecting the normal functioning of the liver) caused by the consumption of alcohol or other drugs, medicines and other environmental factors. In all of these disorders, an excess of ammonium is produced, putting the patient’s health at risk. Values surpassing 200 micromoles per liter of blood are considered severe cases of hyperammonemia (high concentration of ammonium in blood) which can cause irreversible damage to the brain, and can even lead to death, if values surpass 500 micromoles per liter. Therefore, an early diagnosis in real time is crucial to minimizing the impact of a hyperammonemia episode on neurological functions. Currently, patients diagnosed with disorders which include hyperammonemia episodes must periodically be visited at hospital, where a blood sample is taken, which then must be treated an analyzed in the lab.

Now, researchers at the Autonomous University of Barcelona (UAB, Barcelona, Spain) have developed an analyzer that monitors the level of ammonium in the patient’s blood using a decentralized method at the point-of-care, instead of sending blood samples to be analyzed in hospital laboratories, where traditional equipment is used. The new device aims to decentralize the blood ammonium determination, making the analysis possible at smaller healthcare centers with direct blood measurements and no need for previous treatments. This would represent multiplying the number of monitoring sites, simplifying the process and reducing the time needed to take medical decisions.

The device uses a microfluidic platform which includes a potentiometric detection system and a gas separation membrane. In this manner, it is possible to automatically separate the ammonium in the form of ammonia from the rest of the complex matrix of blood, obtaining a selective detection free of any other type of interferences. This guarantees a precise and exact determination of ammonium concentration in whole blood and not in plasma, which is the method conventionally used to analyze this parameter. The research team is preparing a prototype that will function under semi-autonomous conditions. Once the device is ready, it will measure all ammonium samples analyzed with the conventional method and with the new equipment created by researchers.

“Increasing the frequency of blood analyses to determine ammonium levels is of vital importance,” explained UAB researcher Mar Puyol, director of the study. She goes on to say that: “Reducing the excess of ammonium in a patient with hyperammonemia is done by restricting protein intake, using drugs to enhance ammonium elimination, and dialysis and hemofiltration in the most acute cases, so that the evolution of the patient will be more favorable the faster the doctors act, and that can be achieved by using the point-of-care analyzers such as the one we have developed.”

Puyol warns that “hundreds of samples will be necessary before the final prototype of the point-of-care analyzer is validated. The next stage will then be industrializing the device to launch it into the market. There are still several stages before reaching that scenario, but the device is expected to become an economic alternative that can facilitate the monitoring of liver diseases in developing countries as well.”

Related Links:

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article


Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more


view channel
Image: ‘Virtual biopsy’ allows clinicians to analyze skin noninvasively (Photo courtesy of Stanford Medicine)

Virtual Skin Biopsy Determines Presence of Cancerous Cells

When dermatologists spot an unusual mark on a patient's skin, they face a choice: monitor it for some time or remove it for biopsy. Similarly, when removing breast tumors, surgeons must send excised tissues... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.