We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Combined with Molecule-Making Machine Could Make Complex Chemistry Automated and Accessible

By LabMedica International staff writers
Posted on 31 Oct 2022

Automated synthesis machines for proteins and nucleic acids such as DNA have revolutionized research and chemical manufacturing in those fields, but many chemicals of importance for pharmaceutical, clinical, manufacturing and materials applications are small molecules with complex structures. More...

A team of researchers had earlier pioneered the development of simple chemical building blocks for small molecules. They had also developed an automated molecule-making machine that snaps together the buildings blocks to create a wide range of possible structures. Now, the team has combined artificial intelligence (AI), “building-block” chemistry and a molecule-making machine to find the best general reaction conditions for synthesizing chemicals important to biomedical and materials research – a finding that could speed innovation and drug discovery as well as make complex chemistry automated and accessible.

With the machine-generated optimized conditions, researchers at the University of Illinois at Urbana-Champaign (Champaign, IL, USA), the Polish Academy of Sciences’ Institute for Organic Chemistry (IOC PAS, Warsaw, Poland), and the University of Toronto (Toronto, ON, Canada) doubled the average yield of a special, hard-to-optimize type of reaction linking carbon atoms together in pharmaceutically important molecules. The researchers say their system provides a platform that also could be used to find general conditions for other classes of reactions and solutions for similarly complex problems. An automated approach with generalized conditions could help standardize how chemists make some products, addressing the problem of reproducibility.

Published studies reflect conditions that are popular or convenient, rather than the best, so a systematic approach that included diverse data and negative results was necessary, according to the researchers. First, the team ran the entire matrix of possible combinations using the building-block chemistry through an algorithm to group together similar reactions. Then, the AI sent instructions, inputted to a machine in the Molecule Maker Lab located in the Beckman Institute for Advanced Science and Technology, to produce representative reactions from each cluster. The information from those reactions fed back into the model; the AI learned from the data and ordered more experiments from the molecule machine.

The process identified conditions that doubled the average yield of a challenging class of reactions, called heteroaryl Suzuki-Miyaura coupling, crucial for many biological and materials-relevant compounds. The machine-learning process could also be applied to other broad areas of chemistry to find the best reaction conditions for other types of small molecules or even larger organic polymers, the researchers say.

“Generality is critical for automation, and thus making molecular innovation accessible even to nonchemists,” said study co-leader Dr. Martin D. Burke. “The challenge is the haystack of possible reaction conditions is astronomical, and the needle is hidden somewhere inside. By leveraging the power of artificial intelligence and building-block chemistry to create a feedback loop, we were able to shrink the haystack. And we found the needle.”

Related Links:
University of Illinois at Urbana-Champaign 
IOC PAS 
University of Toronto 


Gold Member
Automated MALDI-TOF MS System
EXS 3000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.