We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

WATERS CORPORATION

Waters Corp. designs, manufactures, sells and services ultra performance liquid chromatography (UPLC), high performan... read more Featured Products: More products

Download Mobile App




Mitochondrial Biomarker Predicts Type 2 Diabetes Risk

By LabMedica International staff writers
Posted on 02 Aug 2022
Print article
Image: The Xevo TQD Triple Quadrupole Mass Spectrometer features the universal ion source architecture present on advanced mass spectrometers (Photo courtesy of Waters)
Image: The Xevo TQD Triple Quadrupole Mass Spectrometer features the universal ion source architecture present on advanced mass spectrometers (Photo courtesy of Waters)

Type 2 diabetes (T2D) is characterized by chronic hyperglycemia primarily caused by both impaired insulin secretion by pancreatic β-cells (insulinopenia) and defective insulin signaling in metabolically active tissues (insulin resistance).

The nuclear-encoded protein ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of the mitochondrial ATP synthase. For a long time, IF1 was thought to act only as an inhibitor of the reverse ATPase activity of the ATP synthase. However, recent data indicate that IF1 also partially inhibits the synthetic activity of the ATP synthase in mitochondria, thus limiting oxidative phosphorylation (OXPHOS).

Molecular Biochemists at the Université de Toulouse (Toulouse, France) and their colleagues conducted a prospective study, where the baseline plasma level of IF1 was measured in 307 participants with prediabetes. The primary outcome was the incidence of new onset diabetes (NOD) within five years of follow-up. Cross-sectional analysis of the IF1 level was also done in two independent interventional studies. Correlations between plasma IF1 and metabolic parameters at baseline were assessed by Spearman’s correlation coefficients, and the association with the risk of NOD was determined using Cox proportional‐hazards models.

Biological analyses including plasma triglycerides (TG), total cholesterol, HDL-cholesterol (HDL-C), glucose, glycated hemoglobin (HbA1c), aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (g-GT), insulin and high-molecular-weight adiponectin (HMW-adiponectin) were performed. Plasma apoA-I and IF1 were measured by a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method. Analyses were performed on a Xevo TQD mass spectrometer with an electrospray interface and an Acquity H-Class UPLC device (Waters, Milford, MA, USA).

The scientists reported that the mean IF1 plasma level was lower in participants who developed NOD than in those who did not (537 ± 248 versus 621 ± 313 ng/mL). The plasma IF1 level negatively correlated with clinical variables associated with obesity and insulin resistance, including the BMI and HOMA-IR. Conversely, IF1 was positively associated with plasma markers of cardiometabolic health, such as HDL-C and apoA-I. These correlations were confirmed in cross-sectional analyses. In Therapeutic Innovation in Type 2 DIABetes (IT-DIAB) cohort, the IF1 level was significantly associated with a lower risk of T2D after adjustment for age, sex, and fasting plasma glucose (HR [95% CI] per 1 SD = 0.76 [0.62; 0.94].

The authors concluded that they had identified plasma IF1 as a determinant of T2D onset in high-risk populations, independently of age, sex, and fasting plasma glucose levels. IF1 measurements are foreseen within the framework of other prospective cohorts of individuals at different risks of T2D to more firmly establish the predictive value of IF1 measurements in the assessment of T2D risk along with established risk factors. The study was published on July 26, 2022 in the journal Research Square.

Related Links:
Université de Toulouse 
Waters 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.