We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us


  Gold Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Lipidomics Approach Developed to Predict Cardiovascular Disease, Diabetes

By LabMedica International staff writers
Posted on 18 Apr 2022
Print article
Image: The Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Photo courtesy of Creative Proteomics)
Image: The Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Photo courtesy of Creative Proteomics)

Current detection of cardiovascular disease and diabetes relies heavily on factors such as patient history, sex, age, body mass index, as well as blood panels measuring blood glucose and lipid metabolites, such as high- and low-density cholesterol and triglycerides.

Large population-based genotyping efforts undertaken during recent years have demonstrated that many phenotypes, including predisposition to human diseases, are polygenic, i.e., result from a large number of genetic loci, each having a small effect. In typical genome-wide association studies (GWAS), these effect sizes are estimated separately for each variant position because a joint estimation is computationally intractable.

Clinical scientists at the Lund University (Malmö, Sweden) collaborating with those at Lipotype GmbH (Dresden, Germany) assessed type 2 diabetes (T2D) and cardiovascular disease (CVD) risk for 4,067 participants in a large prospective study, the Malmö Diet and Cancer-Cardiovascular Cohort. Investigators collected information on patient lifestyle as well as blood plasma samples from healthy, middle-aged Swedish residents, who were first assessed from 1991 to 1994 and then clinically tracked until 2015.

Measurements (mmol/L) of fasting total cholesterol, HDL cholesterol, HbA1c, triglycerides, and glucose were obtained following standard procedure. Samples for lipid extraction for mass spectrometry lipidomics were analyzed by direct infusion in a QExactive mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a TriVersa NanoMate ion source (Advion Biosciences, Ithaca, NY, USA). Genotyping of participants was performed using the Illumina GSA v1 genotyping array (Illumina, San Diego, CA, USA).

The investigators found that patients at the highest risk for each disease had a 37% probability of acquiring type 2 diabetes and 40.5% chance of acquiring cardiovascular disease. The study participants in the high-risk group showed significantly altered lipidome compositions affecting 167 lipid species for type 2 diabetes and 157 lipid species for cardiovascular disease. Risk stratification was further improved by adding standard clinical variables to the model, resulting in a case rate of 51.0% and 53.3% in the highest risk group for T2D and CVD, respectively.

Chris Lauber, PhD, a professor and corresponding author for the study, said, “In principle, this study can be used to calculate the individual risk for T2D or CVD from the lipidome of a person. It is a first step in the direction of personalized medical practices, and now we want to move from research towards an assay that can be used in medical practice.”

The authors concluded that their results demonstrated that a subset of individuals at high risk for developing T2D or CVD can be identified years before disease incidence. The lipidomic risk, that is derived from only one single mass spectrometric measurement that is cheap and fast, is informative and could extend traditional risk assessment based on clinical assays. The study was originally published on March 3, 2022 in the journal PLOS Biology.

Related Links:
Lund University 
Lipotype GmbH 
Thermo Fisher Scientific 
Advion Biosciences 

Gold Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Lab Incubator
Real-Time PCR System
Gold Supplier
Group A Streptococcus Antigen Test
OSOM Strep A Test

Print article



view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more


view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more


view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.