We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Lipoprotein(a) Concentrations Correlate With LDL-C in Diabetic Children

By LabMedica International staff writers
Posted on 30 Nov 2021
Print article
Image: Illustration is of the Vertical Auto Profile (VAP) Lipid test with clear demarcation of the different lipoprotein classes and subclasses. (Photo courtesy of VAP Diagnostics Laboratory)
Image: Illustration is of the Vertical Auto Profile (VAP) Lipid test with clear demarcation of the different lipoprotein classes and subclasses. (Photo courtesy of VAP Diagnostics Laboratory)
Cardiovascular disease (CVD) is a significant cause of mortality in those with diabetes. Increased apolipoprotein B (apoB) and low-density lipoprotein cholesterol (LDL-C) have been shown in pediatric patients with diabetes with worsening glycemic control.

Lipoprotein(a) (Lp(a)) is a highly atherogenic lipoprotein that attaches to the apoB 100 moiety of LDL-C particles. Lp(a) is concentration is generally fully expressed by the second year in childhood. Lp(a) is highly heritable, with great concordance between parental levels.

Pediatric Endocrinologists at the University of Alabama School of Medicine (Birmingham, AL, USA) investigate the relationships between serum concentrations of Lp(a) with low-density lipoprotein cholesterol (LDL-C), race, body mass index (BMI), and HbA1c in children with diabetes. Their secondary aim was to evaluate the factors associated with elevated Lp(a) levels. The carried out across-sectional retrospective chart review of pediatric patients, ages 12-19 years, including 607 type 1 diabetes (T1D) and 93 type 2 diabetes (T2D); 49% were male, mean age was 13.2 ± 3.08 years, and the median Lp(a) was 8.00 mg/dL. In addition to standard lipid profile testing, the clinical laboratory also offered Vertical Auto Profile (VAP) testing through a commercial laboratory (Atherotech, Birmingham, AL, USA).

The investigators reported that the Black children had an increased relative risk (RR) of higher Lp(a) compared with White ones (RR 1.25). The median Lp(a) was significantly higher in Black people than in White people, 9 (6-14) versus 7 (5-11). Among patients with T1D, Black people had an increased relative risk of higher Lp(a) than White people (RR 1.23). In T2D, Black participants have 43% higher risk of having elevated Lp(a) than White participants (RR 1.43). In T1D, a 5 mg/dL increase in LDL-C results in 2% increase in Lp(a). In T2D, a 5 mg/dL increase of LDL-C results in an increase of Lp(a) by 3%. LDL-C and BMI are independently associated with Lp(a) (RR = 1.02 and RR = 0.98), respectively. Interestingly, patients with T1D had higher mean levels of Lp(a) despite having a lower BMI compared to children with T2D. Patients with T1D had higher mean HbA1c than those with T2D (9.14% [5.88-12.4] versus 8.27% [5.67-10.87]).

The authors concluded that Lp(a) is strongly associated with LDL-C in children with diabetes, indicating a reduction of LDL-C may additionally reduce cardiovascular risk by lowering Lp(a) levels. Black children with diabetes have a significant burden of Lp(a) concentrations compared with White children. It may be important to consider Lp(a) screening in children with diabetes for disease risk management and implement stricter therapeutic goals for LDL-C reduction. The study was published in the November, 2021 issue of Journal of the Endocrine Society.

Related Links:
University of Alabama School of Medicine
Atherotech


New
Platinum Supplier
Respiratory Virus Multiplex Test
Respiratory Virus 12 Types Nucleic Acid Detection Kit
New
Gold Supplier
Body Fluid Application
CellaVision Body Fluid Application
New
Zika, Chikungunya and Dengue Rapid Test
DPP ZCD IgM/IgG System
New
Lactose Intolerance Test
Lactose Intolerance LCT Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: New chip could make treating metastatic cancer easier and faster (Photo courtesy of Georgia Institute of Technology)

Simple Blood Test Detection Method Could Revolutionize Cancer Treatment

Cancer spreads via circulating tumor cells (CTCs) that travel through the blood to other organs, and they are nearly impossible to track. When a tumor starts metastasizing, it sheds its cell into the blood.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.