We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

MERIDIAN BIOSCIENCE

Meridian Bioscience manufactures, markets, and distributes diagnostic test kits, purified reagents and biopharmaceuti... read more Featured Products: More products

Download Mobile App




Breath Test Determines Severity of Methylmalonic Acidemia Disease

By LabMedica International staff writers
Posted on 20 Apr 2021
Methylmalonic acidemia is a disorder in which the body cannot break down certain proteins and fats. More...
The result is a buildup of a substance called methylmalonic acid in the blood. This condition is passed down through families and is one of several conditions called an "inborn error of metabolism."

Methylmalonic acidemia affects about 1 in 80,000 newborns and can lead to the buildup of proteins and fats by affecting their metabolism, and cause kidney, liver, and other disease. Methylmalonic acidemia is a genomic disorder that can be caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene.

A large team of medical genomic scientists at the National Human Genome Research Institute (Bethesda, MD, USA) developed a non-invasive test that gauges disease severity by measuring patients' metabolism though the levels of 1-13C-propionate in their breath. The team administered their test to 57 methylmalonic acidemia (MMA) patients and 16 healthy volunteers to find patients with severe subtypes of the disease had low propionate oxidation levels, while those with less severe disease or who had been treated with liver transplants had near-normal propionate oxidation levels.

Isotopomer enrichment (13CO2/12CO2) was measured in exhaled breath after an enteral bolus of sodium-1-13C-propionate, and normalized for CO2 production. 1-13C-propionate oxidation was then correlated with clinical, laboratory, and imaging parameters collected via a dedicated natural history protocol. Breath samples were collected via disposable breath collection kits (EasySampler Breath Test Kit, QuinTron, Santa Maria, CA, USA) prior to isotope administration, and at specified time points over two hours. A second method, utilizing the BreathID Exalenz device (Meridian Bioscience, Cincinnati, OH, USA) was also employed.

The scientists reported that Lower propionate oxidation was observed in patients with the severe mut0 and cblB subtypes of MMA, but was near normal in those with the cblA and mut forms of the disorder. Liver transplant recipients demonstrated complete restoration of 1-13C-propionate oxidation to control levels. 1-13C-propionate oxidation correlated with cognitive test result, growth indices, bone mineral density, renal function, and serum biomarkers. Test repeatability was robust in controls and in MMA subjects (mean coefficient of variation 6.9% and 12.8%, respectively), despite widely variable serum methylmalonic acid concentrations in the patients.

Charles P. Venditti, MD, PhD, the principal investigator and senior author of the study, said, “Our next goal is to see if this specialized breath test can detect increase in carbon 13 propionate oxidation after gene, mRNA, or genome editing therapies. This way, we can also use this test to measure how effective these treatments are in restoring MMUT function.”

The authors concluded that propionate oxidative capacity, as measured with 1-13C-propionate breath testing, predicts disease severity and clinical outcomes, and could be used to assess the therapeutic effects of liver-targeted genomic therapies for MMA and related disorders of propionate metabolism. The study was published on April 5, 2021 in the journal Genetics in Medicine.

Related Links:
National Human Genome Research Institute
QuinTron
Meridian Bioscience



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Gold Member
Hematology Analyzer
Medonic M32B
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.