We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Plasma Serglycin Levels Evaluated for Diabetic Retinopathy Diagnosis

By LabMedica International staff writers
Posted on 04 Jan 2021
Print article
Image: The BD Biosciences FACS Vantage Flow Cytometer System (Photo courtesy of Hospital for Special Surgery).
Image: The BD Biosciences FACS Vantage Flow Cytometer System (Photo courtesy of Hospital for Special Surgery).
Diabetic retinopathy (DR), a microvascular complication caused by chronic diabetes mellitus (DM), is a significant threat to vision in adults, which may even lead to blindness and retinal detachment. The clinical symptoms of DR include fibrosis, capillary obstruction, neovascularization, and increased vascular permeability.

Serglycin (SRGN) is known as a hematopoietic cell granule proteoglycan, exerting its function in the formation of mast cell secretory granules and mediates the storage of various compounds in secretory vesicles. Studies have shown that SRGN is mainly expressed in normal hematopoietic cells, endothelial cells, uterine decidua, and embryonic stem cells.

Ophthalmologists at the Ningbo Eye Hospital (Ningbo, China) recruited,130 DR patients (64 proliferative diabetic retinopathy (PDR) patients and 66 non‐proliferative diabetic retinopathy (NPDR) patients, 55 type 2 diabetes mellitus (T2DM) patients, and 46 healthy controls, between December 2016 and March 2018.

The team measured the expressions of SRGN in plasma samples and cells were by qPCR analysis. Total RNA was extracted and then reverse‐transcribed into cDNA and amplified on an ABI PCR System (Applied Biosystems, Bedford, MA, USA). Total proteins were isolated from plasma samples and cells and the protein concentrations were determined by a Bicinchoninic Acid Protein method and separated by 10% SDS‐PAGE. The scientists also performed cell culture and transfection and CCK‐8 cell proliferation assays. Flow cytometric and cell apoptosis assay were also conducted using a FACS Vantage Flow Cytometer System (BD Biosciences, San Diego, CA, USA).

The investigators communicated that SRGN was dramatically upregulated in NPDR and PDR cases compared with healthy controls and T2DM patients; meanwhile, the expression of SRGN was further increased in the PDR group with regard to the NPDR group. Additionally, the ROC analysis demonstrated that SRGN could distinguish the DR cases from type 2 diabetes mellitus (T2DM) patients and healthy controls. In vitro high‐glucose treatment showed that the SRGN expressions were dramatically increased. The loss of SRGN could partially counteract the inhibition of human retinal endothelial cells (HREC) proliferation caused by high‐glucose stimulation. Meanwhile, SRGN knockdown could reverse the promotion of HREC apoptosis induced by high glucose as well.

The authors concluded that SRGN was significantly upregulated in the serum of DR patients, and after high‐glucose treatment, SRGN promoted the proliferation of human retinal pigment epithelial cells and inhibited the modulation of SRGN. At the same time, SRGN levels were able to screen DR patients from T2DM and healthy populations. The study was published on December 12, 2020 in the Journal of Clinical Laboratory Analysis.

Related Links:
Ningbo Eye Hospital
Applied Biosystems
BD Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.