Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




A Rapid Method for Selecting the Proper Antibiotic to Treat Multidrug Resistant Bacteria

By LabMedica International staff writers
Posted on 12 Dec 2019
A new diagnostic approach allows physicians to accurately identify bacterial pathogens and identify the most appropriate antibiotic within a period of hours rather than days. More...


Multidrug resistant organisms are a serious threat to human health. Fast, accurate antibiotic susceptibility testing (AST) is a critical need in addressing escalating antibiotic resistance, since delays in identifying multidrug resistant organisms increase mortality and use of broad-spectrum antibiotics, further selecting for resistant organisms.

The current gold standard method for "phenotypic" antibiotic susceptibility testing (AST) is growing organisms isolated from the patient in the presence of various antibiotics to see which drug can inhibit growth of the microbe. While such growth-based assays are accurate, they require several days to return results. Newer "genotypic" methods that search bacterial DNA for mutations known to confer drug resistance are quicker but less accurate, since resistance can arise from genetic changes other than those included in the test.

A new approach that combines both phenotypic and genotypic analysis has been developed by investigators at the Broad Institute of the Massachusetts Institute of Technology and Harvard University (Cambridge, MA, USA). This rapid assay combines genotypic and phenotypic AST through RNA detection. The test, which has been named GoPhAST-R (for Genotypic and Phenotypic AST through RNA), classifies bacterial strains with 94–99% accuracy by coupling machine learning analysis of early antibiotic-induced transcriptional changes with simultaneous detection of key genetic resistance determinants.

The method employs machine-learning algorithms to identify the mRNA transcripts that best distinguish drug-sensitive from drug-resistant organisms and integrates this information with analysis of the sequence of mRNA transcripts to reveal whether the bacteria carry key genes known to cause drug resistance.

By performing these analyses on the NanoString (Seattle, WA, USA) prototype Hyb & Seq instrument, the investigators were able to use the GoPhAST-R method to determine antibiotic susceptibility less than four hours after bacteria were positively detected in a blood culture, compared to 28-40 hours using standard clinical laboratory methods. The method was able to detect susceptibility to three major antibiotic classes in clinical use today - carbapenems, fluoroquinolones, and aminoglycosides in five pathogens that often become drug-resistant: Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa.

"The ability to quickly and accurately identify the best antibiotic would greatly improve the care of patients with infection, while ensuring that our arsenal of antibiotics is deployed intelligently and efficiently," said senior author Dr. Deborah Hung, associate professor of molecular biology at Harvard Medical School.

The GoPhAST-R method was described in the November 25, 2019, online edition of the journal Nature Medicine.

Related Links:
Broad Institute
NanoString



New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.