We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

By LabMedica International staff writers
Posted on 26 Dec 2025

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. More...

While existing tools can indicate whether a genetic mutation is harmful, they usually cannot determine what type of disease that mutation may cause. This forces clinicians to sift through thousands of variants, slowing diagnosis and delaying treatment decisions. Researchers have now developed an artificial intelligence (AI)–based method that not only flags disease-causing mutations but also predicts the category of disease they are likely to trigger, significantly improving the speed and clarity of genetic interpretation.

The AI framework known as Variant to Phenotype (V2P) has been designed by researchers at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) to link genetic variants directly to disease outcomes. The system uses advanced machine learning models trained on large datasets of pathogenic and benign genetic variants, combined with disease annotations. By integrating genetic and phenotypic information, the tool predicts not just whether a mutation is harmful, but also the type of disease it is most likely to cause, such as cancer or nervous system disorders.

V2P was evaluated using large-scale genomic datasets and tested on real, de-identified patient data. In these evaluations, the tool consistently ranked the true disease-causing mutation among the top 10 candidate variants, dramatically narrowing the search space for clinicians. The findings, published in Nature Communications, demonstrate that incorporating phenotype prediction substantially improves the accuracy and efficiency of genetic diagnostics compared to traditional variant-ranking methods.

By linking mutations to disease categories, V2P has the potential to accelerate diagnosis for patients with rare and complex conditions and reduce uncertainty in clinical genetics. The approach may also help researchers identify disease-relevant genes and biological pathways, supporting more targeted drug discovery. The researchers plan to refine the system to predict more specific disease outcomes and integrate additional biological data sources, expanding its usefulness for precision medicine and genetically informed therapy development.

"Our approach allows us to pinpoint the genetic changes that are most relevant to a patient’s condition, rather than sifting through thousands of possible variants," said first author David Stein, PhD. "By determining not only whether a variant is pathogenic but also the type of disease it is likely to cause, we can improve both the speed and accuracy of genetic interpretation and diagnostics."

Related Links:
Icahn School of Medicine at Mount Sinai


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: DNA analysis of colorectal polyps can improve hereditary cancer diagnosis (Photo courtesy of Adobe Stock)

DNA Testing of Colorectal Polyps Improves Insight into Hereditary Risks

Colorectal cancer is among the most common cancers in Western countries, and hereditary factors are involved in about 5–10% of cases, particularly in younger patients. Individuals with large numbers of... Read more

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.