Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




ML-Powered Gas Sensors to Detect Pathogens and AMR at POC

By LabMedica International staff writers
Posted on 24 Jul 2025

Fast and accurate diagnosis is critical to improving patient care and combating the global threat of antimicrobial resistance (AMR). More...

Traditional diagnostic methods for infections, such as gas chromatography-mass spectrometry and proton transfer reaction–mass spectrometry, while effective, are expensive, technically demanding, and unsuitable for point-of-care settings. Interpreting volatile organic compounds (VOCs)—the unique chemical signatures emitted by microbes and infected tissues—can be challenging due to their complexity and overlap. Moreover, these VOC signals are often influenced by environmental variables, which adds to diagnostic inaccuracy. A report published in Cell Biomaterials explores the use of sensor systems combined with advanced computational models to detect and classify microbial VOCs with high precision.

This report by researchers at ETH Zurich (Zurich, Switzerland) presents a promising approach that combines gas sensors and machine learning for real-time infection diagnosis. The report explores how gas sensors made from nanostructured metal oxides, conductive polymers, and hybrid composites could offer a compact, affordable, and practical solution for detecting VOCs. These sensors measure changes in electrical resistance or conductance when exposed to microbial byproducts. To decode the complex patterns produced by VOCs, the researchers assessed the viability of integrating machine learning algorithms such as support vector machines (SVM), random forests, long short-term memory (LSTM) neural networks, and gradient boosting to classify sensor data and improve diagnostic accuracy. The models were assessed across bacterial cultures, infected tissues, and clinical biofluids such as urine and blood, demonstrating its ability to distinguish bacterial species and differentiate between drug-resistant and susceptible strains.

The team compiled findings from recent studies that tested these sensor-ML systems on bacterial cultures, infected tissue samples, and clinical biofluids such as urine and blood. The systems achieved high sensitivity and specificity, accurately identifying pathogens like Escherichia coli and Staphylococcus aureus, as well as detecting resistance profiles such as those involving extended-spectrum beta-lactamases. The researchers have emphasized the need for training these machine learning models on comprehensive datasets that reflect clinical variability to ensure robust performance. Ongoing efforts include miniaturizing devices for point-of-care use, functionalizing sensor surfaces, and mitigating environmental interference such as humidity and temperature. Although further development and clinical validation are necessary, these systems offer a clear path toward noninvasive, rapid diagnostics that can complement laboratory methods and support better antimicrobial stewardship.


New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more

Pathology

view channel
Image: UriVerse automates decapping of specimen containers, precise aliquoting, and automatic labeling/recapping of secondary tubes (Photo courtesy of Copan Diagnostics)

Fully Automated System Transforms Pre-Analytical Handling of Urine Specimens

Urine specimens make up a substantial portion of a laboratory’s daily workload, yet essential pre-analytical steps such as aliquoting are often still done manually. These manual processes are time-consuming,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.