We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

By LabMedica International staff writers
Posted on 16 Jan 2025

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the width of five human hairs. More...

The tool, called MISO (Multi-modal Spatial Omics), processes vast amounts of data and applies insights to even the smallest regions on medical images. It has the potential to guide doctors toward the most effective therapies for various cancers, according to a recent paper about MISO published in Nature Methods.

MISO was developed by researchers at the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA) to work in the field of "spatial multi-omics." This area of research aims to gain insights into different conditions by considering the physical arrangement of tissue while examining various "-omics" modalities, such as transcriptomics (gene expression), proteomics (proteins), and metabolomics (metabolites and their processes), among others. In spatial transcriptomics, for example, a single pixel in an image contains 20,000 to 30,000 data points that need to be analyzed across multiple -omics layers, and this number can increase significantly if multiple omic layers are considered. By comparison, MRI and CT scans have only one data point (shades of gray) per pixel to interpret. Without AI tools like MISO, doctors and researchers would find it nearly impossible to uncover the valuable insights that the system can detect.

Using MISO, the researchers uncovered new information about several types of cancer, including bladder, gastric, and colorectal cancers, by analyzing data and images from donated patient tissue. In bladder cancer, MISO identified a specific group of cells responsible for forming tertiary lymphoid structures, which are associated with better responses to immunotherapy. In gastric cancer, MISO was able to differentiate cancer cells from the surrounding mucosa. In colorectal cancer, the system identified various sub-classes of cancer cells, shedding light on the distinct malignant cells within a single tumor. MISO was also used to analyze non-cancerous brain tissue structures.

These breakthroughs can guide more effective therapies, improve survival rates, and provide insights that are very challenging, if not impossible, to obtain without an advanced AI tool like MISO. Moving forward, the team aims to expand their knowledge of spatial -omics and pathology imaging to enhance MISO’s capabilities, including the ability to analyze multiple tissue samples simultaneously, which would greatly increase its output. While some data, such as epigenetic marks (chemicals that regulate DNA and are influenced by the environment), have not yet been widely measured, MISO’s AI system allows it to "learn" from the information it processes, enabling it to recognize new data as it becomes more available.

“As the field of spatial omics advances, it has become possible to measure multiple -omics modalities from the same tissue slice, providing complementary information and offering a more comprehensive, insightful view,” said Mingyao Li, PhD, the study’s senior author and a professor of Biostatistics and Digital Pathology. “MISO addresses a huge data challenge by enabling simultaneous analysis of all spatial -omics modalities, as well as microscopic anatomy images when available. It is the only method that is able to handle datasets like these with hundreds of thousands of cells per sample.”

Related Links:
Perelman School of Medicine


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
ESR Analyzer
TEST1 2.0
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.